direct product, p-group, abelian, monomial
Aliases: C3×C27, SmallGroup(81,5)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C3×C27 |
C1 — C3×C27 |
C1 — C3×C27 |
Generators and relations for C3×C27
G = < a,b | a3=b27=1, ab=ba >
(1 44 69)(2 45 70)(3 46 71)(4 47 72)(5 48 73)(6 49 74)(7 50 75)(8 51 76)(9 52 77)(10 53 78)(11 54 79)(12 28 80)(13 29 81)(14 30 55)(15 31 56)(16 32 57)(17 33 58)(18 34 59)(19 35 60)(20 36 61)(21 37 62)(22 38 63)(23 39 64)(24 40 65)(25 41 66)(26 42 67)(27 43 68)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81)
G:=sub<Sym(81)| (1,44,69)(2,45,70)(3,46,71)(4,47,72)(5,48,73)(6,49,74)(7,50,75)(8,51,76)(9,52,77)(10,53,78)(11,54,79)(12,28,80)(13,29,81)(14,30,55)(15,31,56)(16,32,57)(17,33,58)(18,34,59)(19,35,60)(20,36,61)(21,37,62)(22,38,63)(23,39,64)(24,40,65)(25,41,66)(26,42,67)(27,43,68), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)>;
G:=Group( (1,44,69)(2,45,70)(3,46,71)(4,47,72)(5,48,73)(6,49,74)(7,50,75)(8,51,76)(9,52,77)(10,53,78)(11,54,79)(12,28,80)(13,29,81)(14,30,55)(15,31,56)(16,32,57)(17,33,58)(18,34,59)(19,35,60)(20,36,61)(21,37,62)(22,38,63)(23,39,64)(24,40,65)(25,41,66)(26,42,67)(27,43,68), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81) );
G=PermutationGroup([[(1,44,69),(2,45,70),(3,46,71),(4,47,72),(5,48,73),(6,49,74),(7,50,75),(8,51,76),(9,52,77),(10,53,78),(11,54,79),(12,28,80),(13,29,81),(14,30,55),(15,31,56),(16,32,57),(17,33,58),(18,34,59),(19,35,60),(20,36,61),(21,37,62),(22,38,63),(23,39,64),(24,40,65),(25,41,66),(26,42,67),(27,43,68)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81)]])
C3×C27 is a maximal subgroup of
C27⋊S3 C27⋊2C9 C32⋊C27 C9.5He3 C9.6He3 C9⋊C27 C81⋊C3 C27○He3
C3×C27 is a maximal quotient of
C32⋊C27 C9⋊C27 C81⋊C3
81 conjugacy classes
class | 1 | 3A | ··· | 3H | 9A | ··· | 9R | 27A | ··· | 27BB |
order | 1 | 3 | ··· | 3 | 9 | ··· | 9 | 27 | ··· | 27 |
size | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
81 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 |
type | + | |||||
image | C1 | C3 | C3 | C9 | C9 | C27 |
kernel | C3×C27 | C27 | C3×C9 | C9 | C32 | C3 |
# reps | 1 | 6 | 2 | 12 | 6 | 54 |
Matrix representation of C3×C27 ►in GL2(𝔽109) generated by
45 | 0 |
0 | 63 |
7 | 0 |
0 | 26 |
G:=sub<GL(2,GF(109))| [45,0,0,63],[7,0,0,26] >;
C3×C27 in GAP, Magma, Sage, TeX
C_3\times C_{27}
% in TeX
G:=Group("C3xC27");
// GroupNames label
G:=SmallGroup(81,5);
// by ID
G=gap.SmallGroup(81,5);
# by ID
G:=PCGroup([4,-3,3,-3,-3,36,46]);
// Polycyclic
G:=Group<a,b|a^3=b^27=1,a*b=b*a>;
// generators/relations
Export