Copied to
clipboard

G = C4×D31order 248 = 23·31

Direct product of C4 and D31

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C4×D31, D62.C2, C1242C2, C2.1D62, Dic312C2, C62.2C22, C311(C2×C4), SmallGroup(248,4)

Series: Derived Chief Lower central Upper central

C1C31 — C4×D31
C1C31C62D62 — C4×D31
C31 — C4×D31
C1C4

Generators and relations for C4×D31
 G = < a,b,c | a4=b31=c2=1, ab=ba, ac=ca, cbc=b-1 >

31C2
31C2
31C22
31C4
31C2×C4

Smallest permutation representation of C4×D31
On 124 points
Generators in S124
(1 95 49 63)(2 96 50 64)(3 97 51 65)(4 98 52 66)(5 99 53 67)(6 100 54 68)(7 101 55 69)(8 102 56 70)(9 103 57 71)(10 104 58 72)(11 105 59 73)(12 106 60 74)(13 107 61 75)(14 108 62 76)(15 109 32 77)(16 110 33 78)(17 111 34 79)(18 112 35 80)(19 113 36 81)(20 114 37 82)(21 115 38 83)(22 116 39 84)(23 117 40 85)(24 118 41 86)(25 119 42 87)(26 120 43 88)(27 121 44 89)(28 122 45 90)(29 123 46 91)(30 124 47 92)(31 94 48 93)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31)(32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62)(63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93)(94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124)
(1 31)(2 30)(3 29)(4 28)(5 27)(6 26)(7 25)(8 24)(9 23)(10 22)(11 21)(12 20)(13 19)(14 18)(15 17)(32 34)(35 62)(36 61)(37 60)(38 59)(39 58)(40 57)(41 56)(42 55)(43 54)(44 53)(45 52)(46 51)(47 50)(48 49)(63 93)(64 92)(65 91)(66 90)(67 89)(68 88)(69 87)(70 86)(71 85)(72 84)(73 83)(74 82)(75 81)(76 80)(77 79)(94 95)(96 124)(97 123)(98 122)(99 121)(100 120)(101 119)(102 118)(103 117)(104 116)(105 115)(106 114)(107 113)(108 112)(109 111)

G:=sub<Sym(124)| (1,95,49,63)(2,96,50,64)(3,97,51,65)(4,98,52,66)(5,99,53,67)(6,100,54,68)(7,101,55,69)(8,102,56,70)(9,103,57,71)(10,104,58,72)(11,105,59,73)(12,106,60,74)(13,107,61,75)(14,108,62,76)(15,109,32,77)(16,110,33,78)(17,111,34,79)(18,112,35,80)(19,113,36,81)(20,114,37,82)(21,115,38,83)(22,116,39,84)(23,117,40,85)(24,118,41,86)(25,119,42,87)(26,120,43,88)(27,121,44,89)(28,122,45,90)(29,123,46,91)(30,124,47,92)(31,94,48,93), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31)(32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62)(63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93)(94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124), (1,31)(2,30)(3,29)(4,28)(5,27)(6,26)(7,25)(8,24)(9,23)(10,22)(11,21)(12,20)(13,19)(14,18)(15,17)(32,34)(35,62)(36,61)(37,60)(38,59)(39,58)(40,57)(41,56)(42,55)(43,54)(44,53)(45,52)(46,51)(47,50)(48,49)(63,93)(64,92)(65,91)(66,90)(67,89)(68,88)(69,87)(70,86)(71,85)(72,84)(73,83)(74,82)(75,81)(76,80)(77,79)(94,95)(96,124)(97,123)(98,122)(99,121)(100,120)(101,119)(102,118)(103,117)(104,116)(105,115)(106,114)(107,113)(108,112)(109,111)>;

G:=Group( (1,95,49,63)(2,96,50,64)(3,97,51,65)(4,98,52,66)(5,99,53,67)(6,100,54,68)(7,101,55,69)(8,102,56,70)(9,103,57,71)(10,104,58,72)(11,105,59,73)(12,106,60,74)(13,107,61,75)(14,108,62,76)(15,109,32,77)(16,110,33,78)(17,111,34,79)(18,112,35,80)(19,113,36,81)(20,114,37,82)(21,115,38,83)(22,116,39,84)(23,117,40,85)(24,118,41,86)(25,119,42,87)(26,120,43,88)(27,121,44,89)(28,122,45,90)(29,123,46,91)(30,124,47,92)(31,94,48,93), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31)(32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62)(63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93)(94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124), (1,31)(2,30)(3,29)(4,28)(5,27)(6,26)(7,25)(8,24)(9,23)(10,22)(11,21)(12,20)(13,19)(14,18)(15,17)(32,34)(35,62)(36,61)(37,60)(38,59)(39,58)(40,57)(41,56)(42,55)(43,54)(44,53)(45,52)(46,51)(47,50)(48,49)(63,93)(64,92)(65,91)(66,90)(67,89)(68,88)(69,87)(70,86)(71,85)(72,84)(73,83)(74,82)(75,81)(76,80)(77,79)(94,95)(96,124)(97,123)(98,122)(99,121)(100,120)(101,119)(102,118)(103,117)(104,116)(105,115)(106,114)(107,113)(108,112)(109,111) );

G=PermutationGroup([[(1,95,49,63),(2,96,50,64),(3,97,51,65),(4,98,52,66),(5,99,53,67),(6,100,54,68),(7,101,55,69),(8,102,56,70),(9,103,57,71),(10,104,58,72),(11,105,59,73),(12,106,60,74),(13,107,61,75),(14,108,62,76),(15,109,32,77),(16,110,33,78),(17,111,34,79),(18,112,35,80),(19,113,36,81),(20,114,37,82),(21,115,38,83),(22,116,39,84),(23,117,40,85),(24,118,41,86),(25,119,42,87),(26,120,43,88),(27,121,44,89),(28,122,45,90),(29,123,46,91),(30,124,47,92),(31,94,48,93)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31),(32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62),(63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93),(94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124)], [(1,31),(2,30),(3,29),(4,28),(5,27),(6,26),(7,25),(8,24),(9,23),(10,22),(11,21),(12,20),(13,19),(14,18),(15,17),(32,34),(35,62),(36,61),(37,60),(38,59),(39,58),(40,57),(41,56),(42,55),(43,54),(44,53),(45,52),(46,51),(47,50),(48,49),(63,93),(64,92),(65,91),(66,90),(67,89),(68,88),(69,87),(70,86),(71,85),(72,84),(73,83),(74,82),(75,81),(76,80),(77,79),(94,95),(96,124),(97,123),(98,122),(99,121),(100,120),(101,119),(102,118),(103,117),(104,116),(105,115),(106,114),(107,113),(108,112),(109,111)]])

C4×D31 is a maximal subgroup of   C8⋊D31  D1245C2  D42D31  Q82D31
C4×D31 is a maximal quotient of   C8⋊D31  Dic31⋊C4  D62⋊C4

68 conjugacy classes

class 1 2A2B2C4A4B4C4D31A···31O62A···62O124A···124AD
order1222444431···3162···62124···124
size1131311131312···22···22···2

68 irreducible representations

dim11111222
type++++++
imageC1C2C2C2C4D31D62C4×D31
kernelC4×D31Dic31C124D62D31C4C2C1
# reps11114151530

Matrix representation of C4×D31 in GL3(𝔽373) generated by

10400
03720
00372
,
100
001
0372194
,
37200
001
010
G:=sub<GL(3,GF(373))| [104,0,0,0,372,0,0,0,372],[1,0,0,0,0,372,0,1,194],[372,0,0,0,0,1,0,1,0] >;

C4×D31 in GAP, Magma, Sage, TeX

C_4\times D_{31}
% in TeX

G:=Group("C4xD31");
// GroupNames label

G:=SmallGroup(248,4);
// by ID

G=gap.SmallGroup(248,4);
# by ID

G:=PCGroup([4,-2,-2,-2,-31,21,3843]);
// Polycyclic

G:=Group<a,b,c|a^4=b^31=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C4×D31 in TeX

׿
×
𝔽