metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D4⋊2D31, C4.5D62, Dic62⋊3C2, C62.6C23, C22.1D62, C124.5C22, D62.2C22, Dic31.4C22, (C4×D31)⋊2C2, (D4×C31)⋊3C2, C31⋊2(C4○D4), C31⋊D4⋊2C2, (C2×C62).C22, (C2×Dic31)⋊3C2, C2.7(C22×D31), SmallGroup(496,32)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D4⋊2D31
G = < a,b,c,d | a4=b2=c31=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, dbd=a2b, dcd=c-1 >
(1 93 43 108)(2 63 44 109)(3 64 45 110)(4 65 46 111)(5 66 47 112)(6 67 48 113)(7 68 49 114)(8 69 50 115)(9 70 51 116)(10 71 52 117)(11 72 53 118)(12 73 54 119)(13 74 55 120)(14 75 56 121)(15 76 57 122)(16 77 58 123)(17 78 59 124)(18 79 60 94)(19 80 61 95)(20 81 62 96)(21 82 32 97)(22 83 33 98)(23 84 34 99)(24 85 35 100)(25 86 36 101)(26 87 37 102)(27 88 38 103)(28 89 39 104)(29 90 40 105)(30 91 41 106)(31 92 42 107)(125 187 156 218)(126 188 157 219)(127 189 158 220)(128 190 159 221)(129 191 160 222)(130 192 161 223)(131 193 162 224)(132 194 163 225)(133 195 164 226)(134 196 165 227)(135 197 166 228)(136 198 167 229)(137 199 168 230)(138 200 169 231)(139 201 170 232)(140 202 171 233)(141 203 172 234)(142 204 173 235)(143 205 174 236)(144 206 175 237)(145 207 176 238)(146 208 177 239)(147 209 178 240)(148 210 179 241)(149 211 180 242)(150 212 181 243)(151 213 182 244)(152 214 183 245)(153 215 184 246)(154 216 185 247)(155 217 186 248)
(63 109)(64 110)(65 111)(66 112)(67 113)(68 114)(69 115)(70 116)(71 117)(72 118)(73 119)(74 120)(75 121)(76 122)(77 123)(78 124)(79 94)(80 95)(81 96)(82 97)(83 98)(84 99)(85 100)(86 101)(87 102)(88 103)(89 104)(90 105)(91 106)(92 107)(93 108)(125 156)(126 157)(127 158)(128 159)(129 160)(130 161)(131 162)(132 163)(133 164)(134 165)(135 166)(136 167)(137 168)(138 169)(139 170)(140 171)(141 172)(142 173)(143 174)(144 175)(145 176)(146 177)(147 178)(148 179)(149 180)(150 181)(151 182)(152 183)(153 184)(154 185)(155 186)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31)(32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62)(63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93)(94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124)(125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155)(156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186)(187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217)(218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248)
(1 155)(2 154)(3 153)(4 152)(5 151)(6 150)(7 149)(8 148)(9 147)(10 146)(11 145)(12 144)(13 143)(14 142)(15 141)(16 140)(17 139)(18 138)(19 137)(20 136)(21 135)(22 134)(23 133)(24 132)(25 131)(26 130)(27 129)(28 128)(29 127)(30 126)(31 125)(32 166)(33 165)(34 164)(35 163)(36 162)(37 161)(38 160)(39 159)(40 158)(41 157)(42 156)(43 186)(44 185)(45 184)(46 183)(47 182)(48 181)(49 180)(50 179)(51 178)(52 177)(53 176)(54 175)(55 174)(56 173)(57 172)(58 171)(59 170)(60 169)(61 168)(62 167)(63 216)(64 215)(65 214)(66 213)(67 212)(68 211)(69 210)(70 209)(71 208)(72 207)(73 206)(74 205)(75 204)(76 203)(77 202)(78 201)(79 200)(80 199)(81 198)(82 197)(83 196)(84 195)(85 194)(86 193)(87 192)(88 191)(89 190)(90 189)(91 188)(92 187)(93 217)(94 231)(95 230)(96 229)(97 228)(98 227)(99 226)(100 225)(101 224)(102 223)(103 222)(104 221)(105 220)(106 219)(107 218)(108 248)(109 247)(110 246)(111 245)(112 244)(113 243)(114 242)(115 241)(116 240)(117 239)(118 238)(119 237)(120 236)(121 235)(122 234)(123 233)(124 232)
G:=sub<Sym(248)| (1,93,43,108)(2,63,44,109)(3,64,45,110)(4,65,46,111)(5,66,47,112)(6,67,48,113)(7,68,49,114)(8,69,50,115)(9,70,51,116)(10,71,52,117)(11,72,53,118)(12,73,54,119)(13,74,55,120)(14,75,56,121)(15,76,57,122)(16,77,58,123)(17,78,59,124)(18,79,60,94)(19,80,61,95)(20,81,62,96)(21,82,32,97)(22,83,33,98)(23,84,34,99)(24,85,35,100)(25,86,36,101)(26,87,37,102)(27,88,38,103)(28,89,39,104)(29,90,40,105)(30,91,41,106)(31,92,42,107)(125,187,156,218)(126,188,157,219)(127,189,158,220)(128,190,159,221)(129,191,160,222)(130,192,161,223)(131,193,162,224)(132,194,163,225)(133,195,164,226)(134,196,165,227)(135,197,166,228)(136,198,167,229)(137,199,168,230)(138,200,169,231)(139,201,170,232)(140,202,171,233)(141,203,172,234)(142,204,173,235)(143,205,174,236)(144,206,175,237)(145,207,176,238)(146,208,177,239)(147,209,178,240)(148,210,179,241)(149,211,180,242)(150,212,181,243)(151,213,182,244)(152,214,183,245)(153,215,184,246)(154,216,185,247)(155,217,186,248), (63,109)(64,110)(65,111)(66,112)(67,113)(68,114)(69,115)(70,116)(71,117)(72,118)(73,119)(74,120)(75,121)(76,122)(77,123)(78,124)(79,94)(80,95)(81,96)(82,97)(83,98)(84,99)(85,100)(86,101)(87,102)(88,103)(89,104)(90,105)(91,106)(92,107)(93,108)(125,156)(126,157)(127,158)(128,159)(129,160)(130,161)(131,162)(132,163)(133,164)(134,165)(135,166)(136,167)(137,168)(138,169)(139,170)(140,171)(141,172)(142,173)(143,174)(144,175)(145,176)(146,177)(147,178)(148,179)(149,180)(150,181)(151,182)(152,183)(153,184)(154,185)(155,186), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31)(32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62)(63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93)(94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124)(125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155)(156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186)(187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217)(218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248), (1,155)(2,154)(3,153)(4,152)(5,151)(6,150)(7,149)(8,148)(9,147)(10,146)(11,145)(12,144)(13,143)(14,142)(15,141)(16,140)(17,139)(18,138)(19,137)(20,136)(21,135)(22,134)(23,133)(24,132)(25,131)(26,130)(27,129)(28,128)(29,127)(30,126)(31,125)(32,166)(33,165)(34,164)(35,163)(36,162)(37,161)(38,160)(39,159)(40,158)(41,157)(42,156)(43,186)(44,185)(45,184)(46,183)(47,182)(48,181)(49,180)(50,179)(51,178)(52,177)(53,176)(54,175)(55,174)(56,173)(57,172)(58,171)(59,170)(60,169)(61,168)(62,167)(63,216)(64,215)(65,214)(66,213)(67,212)(68,211)(69,210)(70,209)(71,208)(72,207)(73,206)(74,205)(75,204)(76,203)(77,202)(78,201)(79,200)(80,199)(81,198)(82,197)(83,196)(84,195)(85,194)(86,193)(87,192)(88,191)(89,190)(90,189)(91,188)(92,187)(93,217)(94,231)(95,230)(96,229)(97,228)(98,227)(99,226)(100,225)(101,224)(102,223)(103,222)(104,221)(105,220)(106,219)(107,218)(108,248)(109,247)(110,246)(111,245)(112,244)(113,243)(114,242)(115,241)(116,240)(117,239)(118,238)(119,237)(120,236)(121,235)(122,234)(123,233)(124,232)>;
G:=Group( (1,93,43,108)(2,63,44,109)(3,64,45,110)(4,65,46,111)(5,66,47,112)(6,67,48,113)(7,68,49,114)(8,69,50,115)(9,70,51,116)(10,71,52,117)(11,72,53,118)(12,73,54,119)(13,74,55,120)(14,75,56,121)(15,76,57,122)(16,77,58,123)(17,78,59,124)(18,79,60,94)(19,80,61,95)(20,81,62,96)(21,82,32,97)(22,83,33,98)(23,84,34,99)(24,85,35,100)(25,86,36,101)(26,87,37,102)(27,88,38,103)(28,89,39,104)(29,90,40,105)(30,91,41,106)(31,92,42,107)(125,187,156,218)(126,188,157,219)(127,189,158,220)(128,190,159,221)(129,191,160,222)(130,192,161,223)(131,193,162,224)(132,194,163,225)(133,195,164,226)(134,196,165,227)(135,197,166,228)(136,198,167,229)(137,199,168,230)(138,200,169,231)(139,201,170,232)(140,202,171,233)(141,203,172,234)(142,204,173,235)(143,205,174,236)(144,206,175,237)(145,207,176,238)(146,208,177,239)(147,209,178,240)(148,210,179,241)(149,211,180,242)(150,212,181,243)(151,213,182,244)(152,214,183,245)(153,215,184,246)(154,216,185,247)(155,217,186,248), (63,109)(64,110)(65,111)(66,112)(67,113)(68,114)(69,115)(70,116)(71,117)(72,118)(73,119)(74,120)(75,121)(76,122)(77,123)(78,124)(79,94)(80,95)(81,96)(82,97)(83,98)(84,99)(85,100)(86,101)(87,102)(88,103)(89,104)(90,105)(91,106)(92,107)(93,108)(125,156)(126,157)(127,158)(128,159)(129,160)(130,161)(131,162)(132,163)(133,164)(134,165)(135,166)(136,167)(137,168)(138,169)(139,170)(140,171)(141,172)(142,173)(143,174)(144,175)(145,176)(146,177)(147,178)(148,179)(149,180)(150,181)(151,182)(152,183)(153,184)(154,185)(155,186), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31)(32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62)(63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93)(94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124)(125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155)(156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186)(187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217)(218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248), (1,155)(2,154)(3,153)(4,152)(5,151)(6,150)(7,149)(8,148)(9,147)(10,146)(11,145)(12,144)(13,143)(14,142)(15,141)(16,140)(17,139)(18,138)(19,137)(20,136)(21,135)(22,134)(23,133)(24,132)(25,131)(26,130)(27,129)(28,128)(29,127)(30,126)(31,125)(32,166)(33,165)(34,164)(35,163)(36,162)(37,161)(38,160)(39,159)(40,158)(41,157)(42,156)(43,186)(44,185)(45,184)(46,183)(47,182)(48,181)(49,180)(50,179)(51,178)(52,177)(53,176)(54,175)(55,174)(56,173)(57,172)(58,171)(59,170)(60,169)(61,168)(62,167)(63,216)(64,215)(65,214)(66,213)(67,212)(68,211)(69,210)(70,209)(71,208)(72,207)(73,206)(74,205)(75,204)(76,203)(77,202)(78,201)(79,200)(80,199)(81,198)(82,197)(83,196)(84,195)(85,194)(86,193)(87,192)(88,191)(89,190)(90,189)(91,188)(92,187)(93,217)(94,231)(95,230)(96,229)(97,228)(98,227)(99,226)(100,225)(101,224)(102,223)(103,222)(104,221)(105,220)(106,219)(107,218)(108,248)(109,247)(110,246)(111,245)(112,244)(113,243)(114,242)(115,241)(116,240)(117,239)(118,238)(119,237)(120,236)(121,235)(122,234)(123,233)(124,232) );
G=PermutationGroup([[(1,93,43,108),(2,63,44,109),(3,64,45,110),(4,65,46,111),(5,66,47,112),(6,67,48,113),(7,68,49,114),(8,69,50,115),(9,70,51,116),(10,71,52,117),(11,72,53,118),(12,73,54,119),(13,74,55,120),(14,75,56,121),(15,76,57,122),(16,77,58,123),(17,78,59,124),(18,79,60,94),(19,80,61,95),(20,81,62,96),(21,82,32,97),(22,83,33,98),(23,84,34,99),(24,85,35,100),(25,86,36,101),(26,87,37,102),(27,88,38,103),(28,89,39,104),(29,90,40,105),(30,91,41,106),(31,92,42,107),(125,187,156,218),(126,188,157,219),(127,189,158,220),(128,190,159,221),(129,191,160,222),(130,192,161,223),(131,193,162,224),(132,194,163,225),(133,195,164,226),(134,196,165,227),(135,197,166,228),(136,198,167,229),(137,199,168,230),(138,200,169,231),(139,201,170,232),(140,202,171,233),(141,203,172,234),(142,204,173,235),(143,205,174,236),(144,206,175,237),(145,207,176,238),(146,208,177,239),(147,209,178,240),(148,210,179,241),(149,211,180,242),(150,212,181,243),(151,213,182,244),(152,214,183,245),(153,215,184,246),(154,216,185,247),(155,217,186,248)], [(63,109),(64,110),(65,111),(66,112),(67,113),(68,114),(69,115),(70,116),(71,117),(72,118),(73,119),(74,120),(75,121),(76,122),(77,123),(78,124),(79,94),(80,95),(81,96),(82,97),(83,98),(84,99),(85,100),(86,101),(87,102),(88,103),(89,104),(90,105),(91,106),(92,107),(93,108),(125,156),(126,157),(127,158),(128,159),(129,160),(130,161),(131,162),(132,163),(133,164),(134,165),(135,166),(136,167),(137,168),(138,169),(139,170),(140,171),(141,172),(142,173),(143,174),(144,175),(145,176),(146,177),(147,178),(148,179),(149,180),(150,181),(151,182),(152,183),(153,184),(154,185),(155,186)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31),(32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62),(63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93),(94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124),(125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155),(156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186),(187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217),(218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248)], [(1,155),(2,154),(3,153),(4,152),(5,151),(6,150),(7,149),(8,148),(9,147),(10,146),(11,145),(12,144),(13,143),(14,142),(15,141),(16,140),(17,139),(18,138),(19,137),(20,136),(21,135),(22,134),(23,133),(24,132),(25,131),(26,130),(27,129),(28,128),(29,127),(30,126),(31,125),(32,166),(33,165),(34,164),(35,163),(36,162),(37,161),(38,160),(39,159),(40,158),(41,157),(42,156),(43,186),(44,185),(45,184),(46,183),(47,182),(48,181),(49,180),(50,179),(51,178),(52,177),(53,176),(54,175),(55,174),(56,173),(57,172),(58,171),(59,170),(60,169),(61,168),(62,167),(63,216),(64,215),(65,214),(66,213),(67,212),(68,211),(69,210),(70,209),(71,208),(72,207),(73,206),(74,205),(75,204),(76,203),(77,202),(78,201),(79,200),(80,199),(81,198),(82,197),(83,196),(84,195),(85,194),(86,193),(87,192),(88,191),(89,190),(90,189),(91,188),(92,187),(93,217),(94,231),(95,230),(96,229),(97,228),(98,227),(99,226),(100,225),(101,224),(102,223),(103,222),(104,221),(105,220),(106,219),(107,218),(108,248),(109,247),(110,246),(111,245),(112,244),(113,243),(114,242),(115,241),(116,240),(117,239),(118,238),(119,237),(120,236),(121,235),(122,234),(123,233),(124,232)]])
85 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 31A | ··· | 31O | 62A | ··· | 62O | 62P | ··· | 62AS | 124A | ··· | 124O |
order | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 31 | ··· | 31 | 62 | ··· | 62 | 62 | ··· | 62 | 124 | ··· | 124 |
size | 1 | 1 | 2 | 2 | 62 | 2 | 31 | 31 | 62 | 62 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
85 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C4○D4 | D31 | D62 | D62 | D4⋊2D31 |
kernel | D4⋊2D31 | Dic62 | C4×D31 | C2×Dic31 | C31⋊D4 | D4×C31 | C31 | D4 | C4 | C22 | C1 |
# reps | 1 | 1 | 1 | 2 | 2 | 1 | 2 | 15 | 15 | 30 | 15 |
Matrix representation of D4⋊2D31 ►in GL4(𝔽373) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 287 | 307 |
0 | 0 | 16 | 86 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 20 | 372 |
167 | 1 | 0 | 0 |
159 | 97 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
360 | 266 | 0 | 0 |
19 | 13 | 0 | 0 |
0 | 0 | 365 | 150 |
0 | 0 | 201 | 8 |
G:=sub<GL(4,GF(373))| [1,0,0,0,0,1,0,0,0,0,287,16,0,0,307,86],[1,0,0,0,0,1,0,0,0,0,1,20,0,0,0,372],[167,159,0,0,1,97,0,0,0,0,1,0,0,0,0,1],[360,19,0,0,266,13,0,0,0,0,365,201,0,0,150,8] >;
D4⋊2D31 in GAP, Magma, Sage, TeX
D_4\rtimes_2D_{31}
% in TeX
G:=Group("D4:2D31");
// GroupNames label
G:=SmallGroup(496,32);
// by ID
G=gap.SmallGroup(496,32);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-31,46,182,97,12004]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^2=c^31=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations
Export