Extensions 1→N→G→Q→1 with N=C42 and Q=C6

Direct product G=N×Q with N=C42 and Q=C6
dρLabelID
C6×C42252C6xC42252,46

Semidirect products G=N:Q with N=C42 and Q=C6
extensionφ:Q→Aut NdρLabelID
C421C6 = C2×C3⋊F7φ: C6/C1C6 ⊆ Aut C42426+C42:1C6252,30
C422C6 = C6×F7φ: C6/C1C6 ⊆ Aut C42426C42:2C6252,28
C423C6 = C2×S3×C7⋊C3φ: C6/C1C6 ⊆ Aut C42426C42:3C6252,29
C424C6 = C2×C6×C7⋊C3φ: C6/C2C3 ⊆ Aut C4284C42:4C6252,38
C425C6 = C6×D21φ: C6/C3C2 ⊆ Aut C42842C42:5C6252,43
C426C6 = D7×C3×C6φ: C6/C3C2 ⊆ Aut C42126C42:6C6252,41
C427C6 = S3×C42φ: C6/C3C2 ⊆ Aut C42842C42:7C6252,42

Non-split extensions G=N.Q with N=C42 and Q=C6
extensionφ:Q→Aut NdρLabelID
C42.1C6 = C6.F7φ: C6/C1C6 ⊆ Aut C42846-C42.1C6252,18
C42.2C6 = C7⋊C36φ: C6/C1C6 ⊆ Aut C422526C42.2C6252,1
C42.3C6 = C2×C7⋊C18φ: C6/C1C6 ⊆ Aut C421266C42.3C6252,7
C42.4C6 = C3×C7⋊C12φ: C6/C1C6 ⊆ Aut C42846C42.4C6252,16
C42.5C6 = Dic3×C7⋊C3φ: C6/C1C6 ⊆ Aut C42846C42.5C6252,17
C42.6C6 = C4×C7⋊C9φ: C6/C2C3 ⊆ Aut C422523C42.6C6252,2
C42.7C6 = C22×C7⋊C9φ: C6/C2C3 ⊆ Aut C42252C42.7C6252,9
C42.8C6 = C12×C7⋊C3φ: C6/C2C3 ⊆ Aut C42843C42.8C6252,19
C42.9C6 = C3×Dic21φ: C6/C3C2 ⊆ Aut C42842C42.9C6252,22
C42.10C6 = C9×Dic7φ: C6/C3C2 ⊆ Aut C422522C42.10C6252,4
C42.11C6 = D7×C18φ: C6/C3C2 ⊆ Aut C421262C42.11C6252,12
C42.12C6 = C32×Dic7φ: C6/C3C2 ⊆ Aut C42252C42.12C6252,20
C42.13C6 = Dic3×C21φ: C6/C3C2 ⊆ Aut C42842C42.13C6252,21

׿
×
𝔽