Copied to
clipboard

G = S3×C42order 252 = 22·32·7

Direct product of C42 and S3

direct product, metacyclic, supersoluble, monomial, A-group

Aliases: S3×C42, C6⋊C42, C427C6, C3⋊(C2×C42), C219(C2×C6), (C3×C42)⋊4C2, (C3×C6)⋊1C14, (C3×C21)⋊9C22, C322(C2×C14), SmallGroup(252,42)

Series: Derived Chief Lower central Upper central

C1C3 — S3×C42
C1C3C21C3×C21S3×C21 — S3×C42
C3 — S3×C42
C1C42

Generators and relations for S3×C42
 G = < a,b,c | a42=b3=c2=1, ab=ba, ac=ca, cbc=b-1 >

3C2
3C2
2C3
3C22
2C6
3C6
3C6
3C14
3C14
2C21
3C2×C6
3C2×C14
2C42
3C42
3C42
3C2×C42

Smallest permutation representation of S3×C42
On 84 points
Generators in S84
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)
(1 15 29)(2 16 30)(3 17 31)(4 18 32)(5 19 33)(6 20 34)(7 21 35)(8 22 36)(9 23 37)(10 24 38)(11 25 39)(12 26 40)(13 27 41)(14 28 42)(43 71 57)(44 72 58)(45 73 59)(46 74 60)(47 75 61)(48 76 62)(49 77 63)(50 78 64)(51 79 65)(52 80 66)(53 81 67)(54 82 68)(55 83 69)(56 84 70)
(1 70)(2 71)(3 72)(4 73)(5 74)(6 75)(7 76)(8 77)(9 78)(10 79)(11 80)(12 81)(13 82)(14 83)(15 84)(16 43)(17 44)(18 45)(19 46)(20 47)(21 48)(22 49)(23 50)(24 51)(25 52)(26 53)(27 54)(28 55)(29 56)(30 57)(31 58)(32 59)(33 60)(34 61)(35 62)(36 63)(37 64)(38 65)(39 66)(40 67)(41 68)(42 69)

G:=sub<Sym(84)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84), (1,15,29)(2,16,30)(3,17,31)(4,18,32)(5,19,33)(6,20,34)(7,21,35)(8,22,36)(9,23,37)(10,24,38)(11,25,39)(12,26,40)(13,27,41)(14,28,42)(43,71,57)(44,72,58)(45,73,59)(46,74,60)(47,75,61)(48,76,62)(49,77,63)(50,78,64)(51,79,65)(52,80,66)(53,81,67)(54,82,68)(55,83,69)(56,84,70), (1,70)(2,71)(3,72)(4,73)(5,74)(6,75)(7,76)(8,77)(9,78)(10,79)(11,80)(12,81)(13,82)(14,83)(15,84)(16,43)(17,44)(18,45)(19,46)(20,47)(21,48)(22,49)(23,50)(24,51)(25,52)(26,53)(27,54)(28,55)(29,56)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63)(37,64)(38,65)(39,66)(40,67)(41,68)(42,69)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84), (1,15,29)(2,16,30)(3,17,31)(4,18,32)(5,19,33)(6,20,34)(7,21,35)(8,22,36)(9,23,37)(10,24,38)(11,25,39)(12,26,40)(13,27,41)(14,28,42)(43,71,57)(44,72,58)(45,73,59)(46,74,60)(47,75,61)(48,76,62)(49,77,63)(50,78,64)(51,79,65)(52,80,66)(53,81,67)(54,82,68)(55,83,69)(56,84,70), (1,70)(2,71)(3,72)(4,73)(5,74)(6,75)(7,76)(8,77)(9,78)(10,79)(11,80)(12,81)(13,82)(14,83)(15,84)(16,43)(17,44)(18,45)(19,46)(20,47)(21,48)(22,49)(23,50)(24,51)(25,52)(26,53)(27,54)(28,55)(29,56)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63)(37,64)(38,65)(39,66)(40,67)(41,68)(42,69) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)], [(1,15,29),(2,16,30),(3,17,31),(4,18,32),(5,19,33),(6,20,34),(7,21,35),(8,22,36),(9,23,37),(10,24,38),(11,25,39),(12,26,40),(13,27,41),(14,28,42),(43,71,57),(44,72,58),(45,73,59),(46,74,60),(47,75,61),(48,76,62),(49,77,63),(50,78,64),(51,79,65),(52,80,66),(53,81,67),(54,82,68),(55,83,69),(56,84,70)], [(1,70),(2,71),(3,72),(4,73),(5,74),(6,75),(7,76),(8,77),(9,78),(10,79),(11,80),(12,81),(13,82),(14,83),(15,84),(16,43),(17,44),(18,45),(19,46),(20,47),(21,48),(22,49),(23,50),(24,51),(25,52),(26,53),(27,54),(28,55),(29,56),(30,57),(31,58),(32,59),(33,60),(34,61),(35,62),(36,63),(37,64),(38,65),(39,66),(40,67),(41,68),(42,69)])

126 conjugacy classes

class 1 2A2B2C3A3B3C3D3E6A6B6C6D6E6F6G6H6I7A···7F14A···14F14G···14R21A···21L21M···21AD42A···42L42M···42AD42AE···42BB
order1222333336666666667···714···1414···1421···2121···2142···4242···4242···42
size1133112221122233331···11···13···31···12···21···12···23···3

126 irreducible representations

dim11111111111122222222
type+++++
imageC1C2C2C3C6C6C7C14C14C21C42C42S3D6C3×S3S3×C6S3×C7S3×C14S3×C21S3×C42
kernelS3×C42S3×C21C3×C42S3×C14S3×C7C42S3×C6C3×S3C3×C6D6S3C6C42C21C14C7C6C3C2C1
# reps12124261261224121122661212

Matrix representation of S3×C42 in GL2(𝔽43) generated by

260
026
,
60
2436
,
2835
2815
G:=sub<GL(2,GF(43))| [26,0,0,26],[6,24,0,36],[28,28,35,15] >;

S3×C42 in GAP, Magma, Sage, TeX

S_3\times C_{42}
% in TeX

G:=Group("S3xC42");
// GroupNames label

G:=SmallGroup(252,42);
// by ID

G=gap.SmallGroup(252,42);
# by ID

G:=PCGroup([5,-2,-2,-3,-7,-3,4204]);
// Polycyclic

G:=Group<a,b,c|a^42=b^3=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of S3×C42 in TeX

׿
×
𝔽