Copied to
clipboard

G = C12×C7⋊C3order 252 = 22·32·7

Direct product of C12 and C7⋊C3

direct product, metacyclic, supersoluble, monomial, A-group, 3-hyperelementary

Aliases: C12×C7⋊C3, C84⋊C3, C28⋊C32, C214C12, C42.8C6, C72(C3×C12), C14.2(C3×C6), C2.(C6×C7⋊C3), C6.4(C2×C7⋊C3), (C6×C7⋊C3).4C2, (C2×C7⋊C3).2C6, SmallGroup(252,19)

Series: Derived Chief Lower central Upper central

C1C7 — C12×C7⋊C3
C1C7C14C42C6×C7⋊C3 — C12×C7⋊C3
C7 — C12×C7⋊C3
C1C12

Generators and relations for C12×C7⋊C3
 G = < a,b,c | a12=b7=c3=1, ab=ba, ac=ca, cbc-1=b4 >

7C3
7C3
7C3
7C6
7C6
7C6
7C32
7C12
7C12
7C12
7C3×C6
7C3×C12

Smallest permutation representation of C12×C7⋊C3
On 84 points
Generators in S84
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)
(1 83 24 32 43 66 59)(2 84 13 33 44 67 60)(3 73 14 34 45 68 49)(4 74 15 35 46 69 50)(5 75 16 36 47 70 51)(6 76 17 25 48 71 52)(7 77 18 26 37 72 53)(8 78 19 27 38 61 54)(9 79 20 28 39 62 55)(10 80 21 29 40 63 56)(11 81 22 30 41 64 57)(12 82 23 31 42 65 58)
(13 44 84)(14 45 73)(15 46 74)(16 47 75)(17 48 76)(18 37 77)(19 38 78)(20 39 79)(21 40 80)(22 41 81)(23 42 82)(24 43 83)(25 52 71)(26 53 72)(27 54 61)(28 55 62)(29 56 63)(30 57 64)(31 58 65)(32 59 66)(33 60 67)(34 49 68)(35 50 69)(36 51 70)

G:=sub<Sym(84)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84), (1,83,24,32,43,66,59)(2,84,13,33,44,67,60)(3,73,14,34,45,68,49)(4,74,15,35,46,69,50)(5,75,16,36,47,70,51)(6,76,17,25,48,71,52)(7,77,18,26,37,72,53)(8,78,19,27,38,61,54)(9,79,20,28,39,62,55)(10,80,21,29,40,63,56)(11,81,22,30,41,64,57)(12,82,23,31,42,65,58), (13,44,84)(14,45,73)(15,46,74)(16,47,75)(17,48,76)(18,37,77)(19,38,78)(20,39,79)(21,40,80)(22,41,81)(23,42,82)(24,43,83)(25,52,71)(26,53,72)(27,54,61)(28,55,62)(29,56,63)(30,57,64)(31,58,65)(32,59,66)(33,60,67)(34,49,68)(35,50,69)(36,51,70)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84), (1,83,24,32,43,66,59)(2,84,13,33,44,67,60)(3,73,14,34,45,68,49)(4,74,15,35,46,69,50)(5,75,16,36,47,70,51)(6,76,17,25,48,71,52)(7,77,18,26,37,72,53)(8,78,19,27,38,61,54)(9,79,20,28,39,62,55)(10,80,21,29,40,63,56)(11,81,22,30,41,64,57)(12,82,23,31,42,65,58), (13,44,84)(14,45,73)(15,46,74)(16,47,75)(17,48,76)(18,37,77)(19,38,78)(20,39,79)(21,40,80)(22,41,81)(23,42,82)(24,43,83)(25,52,71)(26,53,72)(27,54,61)(28,55,62)(29,56,63)(30,57,64)(31,58,65)(32,59,66)(33,60,67)(34,49,68)(35,50,69)(36,51,70) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84)], [(1,83,24,32,43,66,59),(2,84,13,33,44,67,60),(3,73,14,34,45,68,49),(4,74,15,35,46,69,50),(5,75,16,36,47,70,51),(6,76,17,25,48,71,52),(7,77,18,26,37,72,53),(8,78,19,27,38,61,54),(9,79,20,28,39,62,55),(10,80,21,29,40,63,56),(11,81,22,30,41,64,57),(12,82,23,31,42,65,58)], [(13,44,84),(14,45,73),(15,46,74),(16,47,75),(17,48,76),(18,37,77),(19,38,78),(20,39,79),(21,40,80),(22,41,81),(23,42,82),(24,43,83),(25,52,71),(26,53,72),(27,54,61),(28,55,62),(29,56,63),(30,57,64),(31,58,65),(32,59,66),(33,60,67),(34,49,68),(35,50,69),(36,51,70)]])

60 conjugacy classes

class 1  2 3A3B3C···3H4A4B6A6B6C···6H7A7B12A12B12C12D12E···12P14A14B21A21B21C21D28A28B28C28D42A42B42C42D84A···84H
order12333···344666···6771212121212···12141421212121282828284242424284···84
size11117···711117···73311117···7333333333333333···3

60 irreducible representations

dim111111111333333
type++
imageC1C2C3C3C4C6C6C12C12C7⋊C3C2×C7⋊C3C3×C7⋊C3C4×C7⋊C3C6×C7⋊C3C12×C7⋊C3
kernelC12×C7⋊C3C6×C7⋊C3C4×C7⋊C3C84C3×C7⋊C3C2×C7⋊C3C42C7⋊C3C21C12C6C4C3C2C1
# reps1162262124224448

Matrix representation of C12×C7⋊C3 in GL3(𝔽337) generated by

26500
02650
00265
,
001
10213
01212
,
10212
00336
01336
G:=sub<GL(3,GF(337))| [265,0,0,0,265,0,0,0,265],[0,1,0,0,0,1,1,213,212],[1,0,0,0,0,1,212,336,336] >;

C12×C7⋊C3 in GAP, Magma, Sage, TeX

C_{12}\times C_7\rtimes C_3
% in TeX

G:=Group("C12xC7:C3");
// GroupNames label

G:=SmallGroup(252,19);
// by ID

G=gap.SmallGroup(252,19);
# by ID

G:=PCGroup([5,-2,-3,-3,-2,-7,90,909]);
// Polycyclic

G:=Group<a,b,c|a^12=b^7=c^3=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^4>;
// generators/relations

Export

Subgroup lattice of C12×C7⋊C3 in TeX

׿
×
𝔽