Copied to
clipboard

G = D7×C18order 252 = 22·32·7

Direct product of C18 and D7

direct product, metacyclic, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: D7×C18, C1263C2, C143C18, C634C22, C42.11C6, C3.(C6×D7), C73(C2×C18), C6.3(C3×D7), C21.3(C2×C6), (C3×D7).2C6, (C6×D7).2C3, SmallGroup(252,12)

Series: Derived Chief Lower central Upper central

C1C7 — D7×C18
C1C7C21C63C9×D7 — D7×C18
C7 — D7×C18
C1C18

Generators and relations for D7×C18
 G = < a,b,c | a18=b7=c2=1, ab=ba, ac=ca, cbc=b-1 >

7C2
7C2
7C22
7C6
7C6
7C2×C6
7C18
7C18
7C2×C18

Smallest permutation representation of D7×C18
On 126 points
Generators in S126
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)
(1 120 30 83 42 101 67)(2 121 31 84 43 102 68)(3 122 32 85 44 103 69)(4 123 33 86 45 104 70)(5 124 34 87 46 105 71)(6 125 35 88 47 106 72)(7 126 36 89 48 107 55)(8 109 19 90 49 108 56)(9 110 20 73 50 91 57)(10 111 21 74 51 92 58)(11 112 22 75 52 93 59)(12 113 23 76 53 94 60)(13 114 24 77 54 95 61)(14 115 25 78 37 96 62)(15 116 26 79 38 97 63)(16 117 27 80 39 98 64)(17 118 28 81 40 99 65)(18 119 29 82 41 100 66)
(1 58)(2 59)(3 60)(4 61)(5 62)(6 63)(7 64)(8 65)(9 66)(10 67)(11 68)(12 69)(13 70)(14 71)(15 72)(16 55)(17 56)(18 57)(19 40)(20 41)(21 42)(22 43)(23 44)(24 45)(25 46)(26 47)(27 48)(28 49)(29 50)(30 51)(31 52)(32 53)(33 54)(34 37)(35 38)(36 39)(73 82)(74 83)(75 84)(76 85)(77 86)(78 87)(79 88)(80 89)(81 90)(91 119)(92 120)(93 121)(94 122)(95 123)(96 124)(97 125)(98 126)(99 109)(100 110)(101 111)(102 112)(103 113)(104 114)(105 115)(106 116)(107 117)(108 118)

G:=sub<Sym(126)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126), (1,120,30,83,42,101,67)(2,121,31,84,43,102,68)(3,122,32,85,44,103,69)(4,123,33,86,45,104,70)(5,124,34,87,46,105,71)(6,125,35,88,47,106,72)(7,126,36,89,48,107,55)(8,109,19,90,49,108,56)(9,110,20,73,50,91,57)(10,111,21,74,51,92,58)(11,112,22,75,52,93,59)(12,113,23,76,53,94,60)(13,114,24,77,54,95,61)(14,115,25,78,37,96,62)(15,116,26,79,38,97,63)(16,117,27,80,39,98,64)(17,118,28,81,40,99,65)(18,119,29,82,41,100,66), (1,58)(2,59)(3,60)(4,61)(5,62)(6,63)(7,64)(8,65)(9,66)(10,67)(11,68)(12,69)(13,70)(14,71)(15,72)(16,55)(17,56)(18,57)(19,40)(20,41)(21,42)(22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49)(29,50)(30,51)(31,52)(32,53)(33,54)(34,37)(35,38)(36,39)(73,82)(74,83)(75,84)(76,85)(77,86)(78,87)(79,88)(80,89)(81,90)(91,119)(92,120)(93,121)(94,122)(95,123)(96,124)(97,125)(98,126)(99,109)(100,110)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126), (1,120,30,83,42,101,67)(2,121,31,84,43,102,68)(3,122,32,85,44,103,69)(4,123,33,86,45,104,70)(5,124,34,87,46,105,71)(6,125,35,88,47,106,72)(7,126,36,89,48,107,55)(8,109,19,90,49,108,56)(9,110,20,73,50,91,57)(10,111,21,74,51,92,58)(11,112,22,75,52,93,59)(12,113,23,76,53,94,60)(13,114,24,77,54,95,61)(14,115,25,78,37,96,62)(15,116,26,79,38,97,63)(16,117,27,80,39,98,64)(17,118,28,81,40,99,65)(18,119,29,82,41,100,66), (1,58)(2,59)(3,60)(4,61)(5,62)(6,63)(7,64)(8,65)(9,66)(10,67)(11,68)(12,69)(13,70)(14,71)(15,72)(16,55)(17,56)(18,57)(19,40)(20,41)(21,42)(22,43)(23,44)(24,45)(25,46)(26,47)(27,48)(28,49)(29,50)(30,51)(31,52)(32,53)(33,54)(34,37)(35,38)(36,39)(73,82)(74,83)(75,84)(76,85)(77,86)(78,87)(79,88)(80,89)(81,90)(91,119)(92,120)(93,121)(94,122)(95,123)(96,124)(97,125)(98,126)(99,109)(100,110)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)], [(1,120,30,83,42,101,67),(2,121,31,84,43,102,68),(3,122,32,85,44,103,69),(4,123,33,86,45,104,70),(5,124,34,87,46,105,71),(6,125,35,88,47,106,72),(7,126,36,89,48,107,55),(8,109,19,90,49,108,56),(9,110,20,73,50,91,57),(10,111,21,74,51,92,58),(11,112,22,75,52,93,59),(12,113,23,76,53,94,60),(13,114,24,77,54,95,61),(14,115,25,78,37,96,62),(15,116,26,79,38,97,63),(16,117,27,80,39,98,64),(17,118,28,81,40,99,65),(18,119,29,82,41,100,66)], [(1,58),(2,59),(3,60),(4,61),(5,62),(6,63),(7,64),(8,65),(9,66),(10,67),(11,68),(12,69),(13,70),(14,71),(15,72),(16,55),(17,56),(18,57),(19,40),(20,41),(21,42),(22,43),(23,44),(24,45),(25,46),(26,47),(27,48),(28,49),(29,50),(30,51),(31,52),(32,53),(33,54),(34,37),(35,38),(36,39),(73,82),(74,83),(75,84),(76,85),(77,86),(78,87),(79,88),(80,89),(81,90),(91,119),(92,120),(93,121),(94,122),(95,123),(96,124),(97,125),(98,126),(99,109),(100,110),(101,111),(102,112),(103,113),(104,114),(105,115),(106,116),(107,117),(108,118)]])

90 conjugacy classes

class 1 2A2B2C3A3B6A6B6C6D6E6F7A7B7C9A···9F14A14B14C18A···18F18G···18R21A···21F42A···42F63A···63R126A···126R
order1222336666667779···914141418···1818···1821···2142···4263···63126···126
size1177111177772221···12221···17···72···22···22···22···2

90 irreducible representations

dim111111111222222
type+++++
imageC1C2C2C3C6C6C9C18C18D7D14C3×D7C6×D7C9×D7D7×C18
kernelD7×C18C9×D7C126C6×D7C3×D7C42D14D7C14C18C9C6C3C2C1
# reps121242612633661818

Matrix representation of D7×C18 in GL3(𝔽127) generated by

2400
01070
00107
,
100
001
012636
,
100
001
010
G:=sub<GL(3,GF(127))| [24,0,0,0,107,0,0,0,107],[1,0,0,0,0,126,0,1,36],[1,0,0,0,0,1,0,1,0] >;

D7×C18 in GAP, Magma, Sage, TeX

D_7\times C_{18}
% in TeX

G:=Group("D7xC18");
// GroupNames label

G:=SmallGroup(252,12);
// by ID

G=gap.SmallGroup(252,12);
# by ID

G:=PCGroup([5,-2,-2,-3,-3,-7,57,5404]);
// Polycyclic

G:=Group<a,b,c|a^18=b^7=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of D7×C18 in TeX

׿
×
𝔽