Copied to
clipboard

G = C7×D20order 280 = 23·5·7

Direct product of C7 and D20

direct product, metacyclic, supersoluble, monomial, 2-hyperelementary

Aliases: C7×D20, C356D4, C283D5, C201C14, C1404C2, D101C14, C14.15D10, C70.20C22, C4⋊(C7×D5), C51(C7×D4), (D5×C14)⋊4C2, C2.4(D5×C14), C10.3(C2×C14), SmallGroup(280,21)

Series: Derived Chief Lower central Upper central

C1C10 — C7×D20
C1C5C10C70D5×C14 — C7×D20
C5C10 — C7×D20
C1C14C28

Generators and relations for C7×D20
 G = < a,b,c | a7=b20=c2=1, ab=ba, ac=ca, cbc=b-1 >

10C2
10C2
5C22
5C22
2D5
2D5
10C14
10C14
5D4
5C2×C14
5C2×C14
2C7×D5
2C7×D5
5C7×D4

Smallest permutation representation of C7×D20
On 140 points
Generators in S140
(1 79 124 105 60 26 94)(2 80 125 106 41 27 95)(3 61 126 107 42 28 96)(4 62 127 108 43 29 97)(5 63 128 109 44 30 98)(6 64 129 110 45 31 99)(7 65 130 111 46 32 100)(8 66 131 112 47 33 81)(9 67 132 113 48 34 82)(10 68 133 114 49 35 83)(11 69 134 115 50 36 84)(12 70 135 116 51 37 85)(13 71 136 117 52 38 86)(14 72 137 118 53 39 87)(15 73 138 119 54 40 88)(16 74 139 120 55 21 89)(17 75 140 101 56 22 90)(18 76 121 102 57 23 91)(19 77 122 103 58 24 92)(20 78 123 104 59 25 93)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)
(1 20)(2 19)(3 18)(4 17)(5 16)(6 15)(7 14)(8 13)(9 12)(10 11)(21 30)(22 29)(23 28)(24 27)(25 26)(31 40)(32 39)(33 38)(34 37)(35 36)(41 58)(42 57)(43 56)(44 55)(45 54)(46 53)(47 52)(48 51)(49 50)(59 60)(61 76)(62 75)(63 74)(64 73)(65 72)(66 71)(67 70)(68 69)(77 80)(78 79)(81 86)(82 85)(83 84)(87 100)(88 99)(89 98)(90 97)(91 96)(92 95)(93 94)(101 108)(102 107)(103 106)(104 105)(109 120)(110 119)(111 118)(112 117)(113 116)(114 115)(121 126)(122 125)(123 124)(127 140)(128 139)(129 138)(130 137)(131 136)(132 135)(133 134)

G:=sub<Sym(140)| (1,79,124,105,60,26,94)(2,80,125,106,41,27,95)(3,61,126,107,42,28,96)(4,62,127,108,43,29,97)(5,63,128,109,44,30,98)(6,64,129,110,45,31,99)(7,65,130,111,46,32,100)(8,66,131,112,47,33,81)(9,67,132,113,48,34,82)(10,68,133,114,49,35,83)(11,69,134,115,50,36,84)(12,70,135,116,51,37,85)(13,71,136,117,52,38,86)(14,72,137,118,53,39,87)(15,73,138,119,54,40,88)(16,74,139,120,55,21,89)(17,75,140,101,56,22,90)(18,76,121,102,57,23,91)(19,77,122,103,58,24,92)(20,78,123,104,59,25,93), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,30)(22,29)(23,28)(24,27)(25,26)(31,40)(32,39)(33,38)(34,37)(35,36)(41,58)(42,57)(43,56)(44,55)(45,54)(46,53)(47,52)(48,51)(49,50)(59,60)(61,76)(62,75)(63,74)(64,73)(65,72)(66,71)(67,70)(68,69)(77,80)(78,79)(81,86)(82,85)(83,84)(87,100)(88,99)(89,98)(90,97)(91,96)(92,95)(93,94)(101,108)(102,107)(103,106)(104,105)(109,120)(110,119)(111,118)(112,117)(113,116)(114,115)(121,126)(122,125)(123,124)(127,140)(128,139)(129,138)(130,137)(131,136)(132,135)(133,134)>;

G:=Group( (1,79,124,105,60,26,94)(2,80,125,106,41,27,95)(3,61,126,107,42,28,96)(4,62,127,108,43,29,97)(5,63,128,109,44,30,98)(6,64,129,110,45,31,99)(7,65,130,111,46,32,100)(8,66,131,112,47,33,81)(9,67,132,113,48,34,82)(10,68,133,114,49,35,83)(11,69,134,115,50,36,84)(12,70,135,116,51,37,85)(13,71,136,117,52,38,86)(14,72,137,118,53,39,87)(15,73,138,119,54,40,88)(16,74,139,120,55,21,89)(17,75,140,101,56,22,90)(18,76,121,102,57,23,91)(19,77,122,103,58,24,92)(20,78,123,104,59,25,93), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140), (1,20)(2,19)(3,18)(4,17)(5,16)(6,15)(7,14)(8,13)(9,12)(10,11)(21,30)(22,29)(23,28)(24,27)(25,26)(31,40)(32,39)(33,38)(34,37)(35,36)(41,58)(42,57)(43,56)(44,55)(45,54)(46,53)(47,52)(48,51)(49,50)(59,60)(61,76)(62,75)(63,74)(64,73)(65,72)(66,71)(67,70)(68,69)(77,80)(78,79)(81,86)(82,85)(83,84)(87,100)(88,99)(89,98)(90,97)(91,96)(92,95)(93,94)(101,108)(102,107)(103,106)(104,105)(109,120)(110,119)(111,118)(112,117)(113,116)(114,115)(121,126)(122,125)(123,124)(127,140)(128,139)(129,138)(130,137)(131,136)(132,135)(133,134) );

G=PermutationGroup([[(1,79,124,105,60,26,94),(2,80,125,106,41,27,95),(3,61,126,107,42,28,96),(4,62,127,108,43,29,97),(5,63,128,109,44,30,98),(6,64,129,110,45,31,99),(7,65,130,111,46,32,100),(8,66,131,112,47,33,81),(9,67,132,113,48,34,82),(10,68,133,114,49,35,83),(11,69,134,115,50,36,84),(12,70,135,116,51,37,85),(13,71,136,117,52,38,86),(14,72,137,118,53,39,87),(15,73,138,119,54,40,88),(16,74,139,120,55,21,89),(17,75,140,101,56,22,90),(18,76,121,102,57,23,91),(19,77,122,103,58,24,92),(20,78,123,104,59,25,93)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)], [(1,20),(2,19),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,12),(10,11),(21,30),(22,29),(23,28),(24,27),(25,26),(31,40),(32,39),(33,38),(34,37),(35,36),(41,58),(42,57),(43,56),(44,55),(45,54),(46,53),(47,52),(48,51),(49,50),(59,60),(61,76),(62,75),(63,74),(64,73),(65,72),(66,71),(67,70),(68,69),(77,80),(78,79),(81,86),(82,85),(83,84),(87,100),(88,99),(89,98),(90,97),(91,96),(92,95),(93,94),(101,108),(102,107),(103,106),(104,105),(109,120),(110,119),(111,118),(112,117),(113,116),(114,115),(121,126),(122,125),(123,124),(127,140),(128,139),(129,138),(130,137),(131,136),(132,135),(133,134)]])

91 conjugacy classes

class 1 2A2B2C 4 5A5B7A···7F10A10B14A···14F14G···14R20A20B20C20D28A···28F35A···35L70A···70L140A···140X
order12224557···7101014···1414···142020202028···2835···3570···70140···140
size1110102221···1221···110···1022222···22···22···22···2

91 irreducible representations

dim11111122222222
type+++++++
imageC1C2C2C7C14C14D4D5D10D20C7×D4C7×D5D5×C14C7×D20
kernelC7×D20C140D5×C14D20C20D10C35C28C14C7C5C4C2C1
# reps112661212246121224

Matrix representation of C7×D20 in GL2(𝔽281) generated by

1810
0181
,
13450
23117
,
13450
231147
G:=sub<GL(2,GF(281))| [181,0,0,181],[134,231,50,17],[134,231,50,147] >;

C7×D20 in GAP, Magma, Sage, TeX

C_7\times D_{20}
% in TeX

G:=Group("C7xD20");
// GroupNames label

G:=SmallGroup(280,21);
// by ID

G=gap.SmallGroup(280,21);
# by ID

G:=PCGroup([5,-2,-2,-7,-2,-5,301,146,5604]);
// Polycyclic

G:=Group<a,b,c|a^7=b^20=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

Export

Subgroup lattice of C7×D20 in TeX

׿
×
𝔽