Copied to
clipboard

G = D7×Dic5order 280 = 23·5·7

Direct product of D7 and Dic5

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: D7×Dic5, D14.D5, C14.1D10, C10.1D14, Dic352C2, C70.1C22, C54(C4×D7), C354(C2×C4), (C5×D7)⋊2C4, (C10×D7).C2, C2.1(D5×D7), C71(C2×Dic5), (C7×Dic5)⋊1C2, SmallGroup(280,7)

Series: Derived Chief Lower central Upper central

C1C35 — D7×Dic5
C1C7C35C70C10×D7 — D7×Dic5
C35 — D7×Dic5
C1C2

Generators and relations for D7×Dic5
 G = < a,b,c,d | a7=b2=c10=1, d2=c5, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >

7C2
7C2
5C4
7C22
35C4
7C10
7C10
35C2×C4
7Dic5
7C2×C10
5C28
5Dic7
7C2×Dic5
5C4×D7

Smallest permutation representation of D7×Dic5
On 140 points
Generators in S140
(1 76 128 96 112 104 88)(2 77 129 97 113 105 89)(3 78 130 98 114 106 90)(4 79 121 99 115 107 81)(5 80 122 100 116 108 82)(6 71 123 91 117 109 83)(7 72 124 92 118 110 84)(8 73 125 93 119 101 85)(9 74 126 94 120 102 86)(10 75 127 95 111 103 87)(11 43 27 132 51 37 63)(12 44 28 133 52 38 64)(13 45 29 134 53 39 65)(14 46 30 135 54 40 66)(15 47 21 136 55 31 67)(16 48 22 137 56 32 68)(17 49 23 138 57 33 69)(18 50 24 139 58 34 70)(19 41 25 140 59 35 61)(20 42 26 131 60 36 62)
(1 88)(2 89)(3 90)(4 81)(5 82)(6 83)(7 84)(8 85)(9 86)(10 87)(11 27)(12 28)(13 29)(14 30)(15 21)(16 22)(17 23)(18 24)(19 25)(20 26)(31 55)(32 56)(33 57)(34 58)(35 59)(36 60)(37 51)(38 52)(39 53)(40 54)(61 140)(62 131)(63 132)(64 133)(65 134)(66 135)(67 136)(68 137)(69 138)(70 139)(71 109)(72 110)(73 101)(74 102)(75 103)(76 104)(77 105)(78 106)(79 107)(80 108)(111 127)(112 128)(113 129)(114 130)(115 121)(116 122)(117 123)(118 124)(119 125)(120 126)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)
(1 34 6 39)(2 33 7 38)(3 32 8 37)(4 31 9 36)(5 40 10 35)(11 130 16 125)(12 129 17 124)(13 128 18 123)(14 127 19 122)(15 126 20 121)(21 120 26 115)(22 119 27 114)(23 118 28 113)(24 117 29 112)(25 116 30 111)(41 100 46 95)(42 99 47 94)(43 98 48 93)(44 97 49 92)(45 96 50 91)(51 90 56 85)(52 89 57 84)(53 88 58 83)(54 87 59 82)(55 86 60 81)(61 80 66 75)(62 79 67 74)(63 78 68 73)(64 77 69 72)(65 76 70 71)(101 132 106 137)(102 131 107 136)(103 140 108 135)(104 139 109 134)(105 138 110 133)

G:=sub<Sym(140)| (1,76,128,96,112,104,88)(2,77,129,97,113,105,89)(3,78,130,98,114,106,90)(4,79,121,99,115,107,81)(5,80,122,100,116,108,82)(6,71,123,91,117,109,83)(7,72,124,92,118,110,84)(8,73,125,93,119,101,85)(9,74,126,94,120,102,86)(10,75,127,95,111,103,87)(11,43,27,132,51,37,63)(12,44,28,133,52,38,64)(13,45,29,134,53,39,65)(14,46,30,135,54,40,66)(15,47,21,136,55,31,67)(16,48,22,137,56,32,68)(17,49,23,138,57,33,69)(18,50,24,139,58,34,70)(19,41,25,140,59,35,61)(20,42,26,131,60,36,62), (1,88)(2,89)(3,90)(4,81)(5,82)(6,83)(7,84)(8,85)(9,86)(10,87)(11,27)(12,28)(13,29)(14,30)(15,21)(16,22)(17,23)(18,24)(19,25)(20,26)(31,55)(32,56)(33,57)(34,58)(35,59)(36,60)(37,51)(38,52)(39,53)(40,54)(61,140)(62,131)(63,132)(64,133)(65,134)(66,135)(67,136)(68,137)(69,138)(70,139)(71,109)(72,110)(73,101)(74,102)(75,103)(76,104)(77,105)(78,106)(79,107)(80,108)(111,127)(112,128)(113,129)(114,130)(115,121)(116,122)(117,123)(118,124)(119,125)(120,126), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140), (1,34,6,39)(2,33,7,38)(3,32,8,37)(4,31,9,36)(5,40,10,35)(11,130,16,125)(12,129,17,124)(13,128,18,123)(14,127,19,122)(15,126,20,121)(21,120,26,115)(22,119,27,114)(23,118,28,113)(24,117,29,112)(25,116,30,111)(41,100,46,95)(42,99,47,94)(43,98,48,93)(44,97,49,92)(45,96,50,91)(51,90,56,85)(52,89,57,84)(53,88,58,83)(54,87,59,82)(55,86,60,81)(61,80,66,75)(62,79,67,74)(63,78,68,73)(64,77,69,72)(65,76,70,71)(101,132,106,137)(102,131,107,136)(103,140,108,135)(104,139,109,134)(105,138,110,133)>;

G:=Group( (1,76,128,96,112,104,88)(2,77,129,97,113,105,89)(3,78,130,98,114,106,90)(4,79,121,99,115,107,81)(5,80,122,100,116,108,82)(6,71,123,91,117,109,83)(7,72,124,92,118,110,84)(8,73,125,93,119,101,85)(9,74,126,94,120,102,86)(10,75,127,95,111,103,87)(11,43,27,132,51,37,63)(12,44,28,133,52,38,64)(13,45,29,134,53,39,65)(14,46,30,135,54,40,66)(15,47,21,136,55,31,67)(16,48,22,137,56,32,68)(17,49,23,138,57,33,69)(18,50,24,139,58,34,70)(19,41,25,140,59,35,61)(20,42,26,131,60,36,62), (1,88)(2,89)(3,90)(4,81)(5,82)(6,83)(7,84)(8,85)(9,86)(10,87)(11,27)(12,28)(13,29)(14,30)(15,21)(16,22)(17,23)(18,24)(19,25)(20,26)(31,55)(32,56)(33,57)(34,58)(35,59)(36,60)(37,51)(38,52)(39,53)(40,54)(61,140)(62,131)(63,132)(64,133)(65,134)(66,135)(67,136)(68,137)(69,138)(70,139)(71,109)(72,110)(73,101)(74,102)(75,103)(76,104)(77,105)(78,106)(79,107)(80,108)(111,127)(112,128)(113,129)(114,130)(115,121)(116,122)(117,123)(118,124)(119,125)(120,126), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140), (1,34,6,39)(2,33,7,38)(3,32,8,37)(4,31,9,36)(5,40,10,35)(11,130,16,125)(12,129,17,124)(13,128,18,123)(14,127,19,122)(15,126,20,121)(21,120,26,115)(22,119,27,114)(23,118,28,113)(24,117,29,112)(25,116,30,111)(41,100,46,95)(42,99,47,94)(43,98,48,93)(44,97,49,92)(45,96,50,91)(51,90,56,85)(52,89,57,84)(53,88,58,83)(54,87,59,82)(55,86,60,81)(61,80,66,75)(62,79,67,74)(63,78,68,73)(64,77,69,72)(65,76,70,71)(101,132,106,137)(102,131,107,136)(103,140,108,135)(104,139,109,134)(105,138,110,133) );

G=PermutationGroup([[(1,76,128,96,112,104,88),(2,77,129,97,113,105,89),(3,78,130,98,114,106,90),(4,79,121,99,115,107,81),(5,80,122,100,116,108,82),(6,71,123,91,117,109,83),(7,72,124,92,118,110,84),(8,73,125,93,119,101,85),(9,74,126,94,120,102,86),(10,75,127,95,111,103,87),(11,43,27,132,51,37,63),(12,44,28,133,52,38,64),(13,45,29,134,53,39,65),(14,46,30,135,54,40,66),(15,47,21,136,55,31,67),(16,48,22,137,56,32,68),(17,49,23,138,57,33,69),(18,50,24,139,58,34,70),(19,41,25,140,59,35,61),(20,42,26,131,60,36,62)], [(1,88),(2,89),(3,90),(4,81),(5,82),(6,83),(7,84),(8,85),(9,86),(10,87),(11,27),(12,28),(13,29),(14,30),(15,21),(16,22),(17,23),(18,24),(19,25),(20,26),(31,55),(32,56),(33,57),(34,58),(35,59),(36,60),(37,51),(38,52),(39,53),(40,54),(61,140),(62,131),(63,132),(64,133),(65,134),(66,135),(67,136),(68,137),(69,138),(70,139),(71,109),(72,110),(73,101),(74,102),(75,103),(76,104),(77,105),(78,106),(79,107),(80,108),(111,127),(112,128),(113,129),(114,130),(115,121),(116,122),(117,123),(118,124),(119,125),(120,126)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140)], [(1,34,6,39),(2,33,7,38),(3,32,8,37),(4,31,9,36),(5,40,10,35),(11,130,16,125),(12,129,17,124),(13,128,18,123),(14,127,19,122),(15,126,20,121),(21,120,26,115),(22,119,27,114),(23,118,28,113),(24,117,29,112),(25,116,30,111),(41,100,46,95),(42,99,47,94),(43,98,48,93),(44,97,49,92),(45,96,50,91),(51,90,56,85),(52,89,57,84),(53,88,58,83),(54,87,59,82),(55,86,60,81),(61,80,66,75),(62,79,67,74),(63,78,68,73),(64,77,69,72),(65,76,70,71),(101,132,106,137),(102,131,107,136),(103,140,108,135),(104,139,109,134),(105,138,110,133)]])

40 conjugacy classes

class 1 2A2B2C4A4B4C4D5A5B7A7B7C10A10B10C10D10E10F14A14B14C28A···28F35A···35F70A···70F
order122244445577710101010101014141428···2835···3570···70
size117755353522222221414141422210···104···44···4

40 irreducible representations

dim1111122222244
type++++++-+++-
imageC1C2C2C2C4D5D7Dic5D10D14C4×D7D5×D7D7×Dic5
kernelD7×Dic5C7×Dic5Dic35C10×D7C5×D7D14Dic5D7C14C10C5C2C1
# reps1111423423666

Matrix representation of D7×Dic5 in GL4(𝔽281) generated by

0100
2804700
0010
0001
,
0100
1000
0010
0001
,
280000
028000
0028045
0012439
,
53000
05300
0088152
0084193
G:=sub<GL(4,GF(281))| [0,280,0,0,1,47,0,0,0,0,1,0,0,0,0,1],[0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,1],[280,0,0,0,0,280,0,0,0,0,280,124,0,0,45,39],[53,0,0,0,0,53,0,0,0,0,88,84,0,0,152,193] >;

D7×Dic5 in GAP, Magma, Sage, TeX

D_7\times {\rm Dic}_5
% in TeX

G:=Group("D7xDic5");
// GroupNames label

G:=SmallGroup(280,7);
// by ID

G=gap.SmallGroup(280,7);
# by ID

G:=PCGroup([5,-2,-2,-2,-5,-7,26,328,6004]);
// Polycyclic

G:=Group<a,b,c,d|a^7=b^2=c^10=1,d^2=c^5,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

Export

Subgroup lattice of D7×Dic5 in TeX

׿
×
𝔽