direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: D5×D7, D35⋊C2, C5⋊1D14, C7⋊1D10, C35⋊C22, (C7×D5)⋊C2, (C5×D7)⋊C2, SmallGroup(140,7)
Series: Derived ►Chief ►Lower central ►Upper central
C35 — D5×D7 |
Generators and relations for D5×D7
G = < a,b,c,d | a5=b2=c7=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >
Character table of D5×D7
class | 1 | 2A | 2B | 2C | 5A | 5B | 7A | 7B | 7C | 10A | 10B | 14A | 14B | 14C | 35A | 35B | 35C | 35D | 35E | 35F | |
size | 1 | 5 | 7 | 35 | 2 | 2 | 2 | 2 | 2 | 14 | 14 | 10 | 10 | 10 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 2 | 0 | 2 | 0 | -1-√5/2 | -1+√5/2 | 2 | 2 | 2 | -1+√5/2 | -1-√5/2 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ6 | 2 | 0 | -2 | 0 | -1+√5/2 | -1-√5/2 | 2 | 2 | 2 | 1+√5/2 | 1-√5/2 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D10 |
ρ7 | 2 | 0 | -2 | 0 | -1-√5/2 | -1+√5/2 | 2 | 2 | 2 | 1-√5/2 | 1+√5/2 | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | orthogonal lifted from D10 |
ρ8 | 2 | 0 | 2 | 0 | -1+√5/2 | -1-√5/2 | 2 | 2 | 2 | -1-√5/2 | -1+√5/2 | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ9 | 2 | -2 | 0 | 0 | 2 | 2 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | 0 | 0 | -ζ74-ζ73 | -ζ76-ζ7 | -ζ75-ζ72 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | orthogonal lifted from D14 |
ρ10 | 2 | 2 | 0 | 0 | 2 | 2 | ζ76+ζ7 | ζ74+ζ73 | ζ75+ζ72 | 0 | 0 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | orthogonal lifted from D7 |
ρ11 | 2 | 2 | 0 | 0 | 2 | 2 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | 0 | 0 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | orthogonal lifted from D7 |
ρ12 | 2 | 2 | 0 | 0 | 2 | 2 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | 0 | 0 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | orthogonal lifted from D7 |
ρ13 | 2 | -2 | 0 | 0 | 2 | 2 | ζ74+ζ73 | ζ75+ζ72 | ζ76+ζ7 | 0 | 0 | -ζ75-ζ72 | -ζ74-ζ73 | -ζ76-ζ7 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | ζ75+ζ72 | ζ74+ζ73 | ζ76+ζ7 | orthogonal lifted from D14 |
ρ14 | 2 | -2 | 0 | 0 | 2 | 2 | ζ75+ζ72 | ζ76+ζ7 | ζ74+ζ73 | 0 | 0 | -ζ76-ζ7 | -ζ75-ζ72 | -ζ74-ζ73 | ζ74+ζ73 | ζ76+ζ7 | ζ75+ζ72 | ζ76+ζ7 | ζ75+ζ72 | ζ74+ζ73 | orthogonal lifted from D14 |
ρ15 | 4 | 0 | 0 | 0 | -1-√5 | -1+√5 | 2ζ75+2ζ72 | 2ζ76+2ζ7 | 2ζ74+2ζ73 | 0 | 0 | 0 | 0 | 0 | ζ54ζ74+ζ54ζ73+ζ5ζ74+ζ5ζ73 | ζ53ζ76+ζ53ζ7+ζ52ζ76+ζ52ζ7 | ζ53ζ75+ζ53ζ72+ζ52ζ75+ζ52ζ72 | ζ54ζ76+ζ54ζ7+ζ5ζ76+ζ5ζ7 | ζ54ζ75+ζ54ζ72+ζ5ζ75+ζ5ζ72 | ζ53ζ74+ζ53ζ73+ζ52ζ74+ζ52ζ73 | orthogonal faithful |
ρ16 | 4 | 0 | 0 | 0 | -1+√5 | -1-√5 | 2ζ74+2ζ73 | 2ζ75+2ζ72 | 2ζ76+2ζ7 | 0 | 0 | 0 | 0 | 0 | ζ53ζ76+ζ53ζ7+ζ52ζ76+ζ52ζ7 | ζ54ζ75+ζ54ζ72+ζ5ζ75+ζ5ζ72 | ζ54ζ74+ζ54ζ73+ζ5ζ74+ζ5ζ73 | ζ53ζ75+ζ53ζ72+ζ52ζ75+ζ52ζ72 | ζ53ζ74+ζ53ζ73+ζ52ζ74+ζ52ζ73 | ζ54ζ76+ζ54ζ7+ζ5ζ76+ζ5ζ7 | orthogonal faithful |
ρ17 | 4 | 0 | 0 | 0 | -1+√5 | -1-√5 | 2ζ76+2ζ7 | 2ζ74+2ζ73 | 2ζ75+2ζ72 | 0 | 0 | 0 | 0 | 0 | ζ53ζ75+ζ53ζ72+ζ52ζ75+ζ52ζ72 | ζ54ζ74+ζ54ζ73+ζ5ζ74+ζ5ζ73 | ζ54ζ76+ζ54ζ7+ζ5ζ76+ζ5ζ7 | ζ53ζ74+ζ53ζ73+ζ52ζ74+ζ52ζ73 | ζ53ζ76+ζ53ζ7+ζ52ζ76+ζ52ζ7 | ζ54ζ75+ζ54ζ72+ζ5ζ75+ζ5ζ72 | orthogonal faithful |
ρ18 | 4 | 0 | 0 | 0 | -1-√5 | -1+√5 | 2ζ74+2ζ73 | 2ζ75+2ζ72 | 2ζ76+2ζ7 | 0 | 0 | 0 | 0 | 0 | ζ54ζ76+ζ54ζ7+ζ5ζ76+ζ5ζ7 | ζ53ζ75+ζ53ζ72+ζ52ζ75+ζ52ζ72 | ζ53ζ74+ζ53ζ73+ζ52ζ74+ζ52ζ73 | ζ54ζ75+ζ54ζ72+ζ5ζ75+ζ5ζ72 | ζ54ζ74+ζ54ζ73+ζ5ζ74+ζ5ζ73 | ζ53ζ76+ζ53ζ7+ζ52ζ76+ζ52ζ7 | orthogonal faithful |
ρ19 | 4 | 0 | 0 | 0 | -1+√5 | -1-√5 | 2ζ75+2ζ72 | 2ζ76+2ζ7 | 2ζ74+2ζ73 | 0 | 0 | 0 | 0 | 0 | ζ53ζ74+ζ53ζ73+ζ52ζ74+ζ52ζ73 | ζ54ζ76+ζ54ζ7+ζ5ζ76+ζ5ζ7 | ζ54ζ75+ζ54ζ72+ζ5ζ75+ζ5ζ72 | ζ53ζ76+ζ53ζ7+ζ52ζ76+ζ52ζ7 | ζ53ζ75+ζ53ζ72+ζ52ζ75+ζ52ζ72 | ζ54ζ74+ζ54ζ73+ζ5ζ74+ζ5ζ73 | orthogonal faithful |
ρ20 | 4 | 0 | 0 | 0 | -1-√5 | -1+√5 | 2ζ76+2ζ7 | 2ζ74+2ζ73 | 2ζ75+2ζ72 | 0 | 0 | 0 | 0 | 0 | ζ54ζ75+ζ54ζ72+ζ5ζ75+ζ5ζ72 | ζ53ζ74+ζ53ζ73+ζ52ζ74+ζ52ζ73 | ζ53ζ76+ζ53ζ7+ζ52ζ76+ζ52ζ7 | ζ54ζ74+ζ54ζ73+ζ5ζ74+ζ5ζ73 | ζ54ζ76+ζ54ζ7+ζ5ζ76+ζ5ζ7 | ζ53ζ75+ζ53ζ72+ζ52ζ75+ζ52ζ72 | orthogonal faithful |
(1 34 27 20 13)(2 35 28 21 14)(3 29 22 15 8)(4 30 23 16 9)(5 31 24 17 10)(6 32 25 18 11)(7 33 26 19 12)
(1 13)(2 14)(3 8)(4 9)(5 10)(6 11)(7 12)(15 29)(16 30)(17 31)(18 32)(19 33)(20 34)(21 35)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)
(1 7)(2 6)(3 5)(8 10)(11 14)(12 13)(15 17)(18 21)(19 20)(22 24)(25 28)(26 27)(29 31)(32 35)(33 34)
G:=sub<Sym(35)| (1,34,27,20,13)(2,35,28,21,14)(3,29,22,15,8)(4,30,23,16,9)(5,31,24,17,10)(6,32,25,18,11)(7,33,26,19,12), (1,13)(2,14)(3,8)(4,9)(5,10)(6,11)(7,12)(15,29)(16,30)(17,31)(18,32)(19,33)(20,34)(21,35), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,17)(18,21)(19,20)(22,24)(25,28)(26,27)(29,31)(32,35)(33,34)>;
G:=Group( (1,34,27,20,13)(2,35,28,21,14)(3,29,22,15,8)(4,30,23,16,9)(5,31,24,17,10)(6,32,25,18,11)(7,33,26,19,12), (1,13)(2,14)(3,8)(4,9)(5,10)(6,11)(7,12)(15,29)(16,30)(17,31)(18,32)(19,33)(20,34)(21,35), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,17)(18,21)(19,20)(22,24)(25,28)(26,27)(29,31)(32,35)(33,34) );
G=PermutationGroup([[(1,34,27,20,13),(2,35,28,21,14),(3,29,22,15,8),(4,30,23,16,9),(5,31,24,17,10),(6,32,25,18,11),(7,33,26,19,12)], [(1,13),(2,14),(3,8),(4,9),(5,10),(6,11),(7,12),(15,29),(16,30),(17,31),(18,32),(19,33),(20,34),(21,35)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35)], [(1,7),(2,6),(3,5),(8,10),(11,14),(12,13),(15,17),(18,21),(19,20),(22,24),(25,28),(26,27),(29,31),(32,35),(33,34)]])
D5×D7 is a maximal subgroup of
D15⋊D7
D5×D7 is a maximal quotient of D70.C2 C35⋊D4 C5⋊D28 C7⋊D20 C35⋊Q8 D15⋊D7
Matrix representation of D5×D7 ►in GL4(𝔽71) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 61 | 7 |
0 | 0 | 35 | 18 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 70 | 0 |
0 | 0 | 67 | 1 |
70 | 1 | 0 | 0 |
55 | 15 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
70 | 0 | 0 | 0 |
55 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(71))| [1,0,0,0,0,1,0,0,0,0,61,35,0,0,7,18],[1,0,0,0,0,1,0,0,0,0,70,67,0,0,0,1],[70,55,0,0,1,15,0,0,0,0,1,0,0,0,0,1],[70,55,0,0,0,1,0,0,0,0,1,0,0,0,0,1] >;
D5×D7 in GAP, Magma, Sage, TeX
D_5\times D_7
% in TeX
G:=Group("D5xD7");
// GroupNames label
G:=SmallGroup(140,7);
// by ID
G=gap.SmallGroup(140,7);
# by ID
G:=PCGroup([4,-2,-2,-5,-7,102,1923]);
// Polycyclic
G:=Group<a,b,c,d|a^5=b^2=c^7=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations
Export
Subgroup lattice of D5×D7 in TeX
Character table of D5×D7 in TeX