Copied to
clipboard

G = D5×D7order 140 = 22·5·7

Direct product of D5 and D7

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: D5×D7, D35⋊C2, C51D14, C71D10, C35⋊C22, (C7×D5)⋊C2, (C5×D7)⋊C2, SmallGroup(140,7)

Series: Derived Chief Lower central Upper central

C1C35 — D5×D7
C1C7C35C5×D7 — D5×D7
C35 — D5×D7
C1

Generators and relations for D5×D7
 G = < a,b,c,d | a5=b2=c7=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

5C2
7C2
35C2
35C22
7C10
7D5
5C14
5D7
7D10
5D14

Character table of D5×D7

 class 12A2B2C5A5B7A7B7C10A10B14A14B14C35A35B35C35D35E35F
 size 15735222221414101010444444
ρ111111111111111111111    trivial
ρ211-1-111111-1-1111111111    linear of order 2
ρ31-1-1111111-1-1-1-1-1111111    linear of order 2
ρ41-11-11111111-1-1-1111111    linear of order 2
ρ52020-1-5/2-1+5/2222-1+5/2-1-5/2000-1+5/2-1-5/2-1-5/2-1+5/2-1+5/2-1-5/2    orthogonal lifted from D5
ρ620-20-1+5/2-1-5/22221+5/21-5/2000-1-5/2-1+5/2-1+5/2-1-5/2-1-5/2-1+5/2    orthogonal lifted from D10
ρ720-20-1-5/2-1+5/22221-5/21+5/2000-1+5/2-1-5/2-1-5/2-1+5/2-1+5/2-1-5/2    orthogonal lifted from D10
ρ82020-1+5/2-1-5/2222-1-5/2-1+5/2000-1-5/2-1+5/2-1+5/2-1-5/2-1-5/2-1+5/2    orthogonal lifted from D5
ρ92-20022ζ767ζ7473ζ75720074737677572ζ7572ζ7473ζ767ζ7473ζ767ζ7572    orthogonal lifted from D14
ρ10220022ζ767ζ7473ζ757200ζ7473ζ767ζ7572ζ7572ζ7473ζ767ζ7473ζ767ζ7572    orthogonal lifted from D7
ρ11220022ζ7473ζ7572ζ76700ζ7572ζ7473ζ767ζ767ζ7572ζ7473ζ7572ζ7473ζ767    orthogonal lifted from D7
ρ12220022ζ7572ζ767ζ747300ζ767ζ7572ζ7473ζ7473ζ767ζ7572ζ767ζ7572ζ7473    orthogonal lifted from D7
ρ132-20022ζ7473ζ7572ζ7670075727473767ζ767ζ7572ζ7473ζ7572ζ7473ζ767    orthogonal lifted from D14
ρ142-20022ζ7572ζ767ζ74730076775727473ζ7473ζ767ζ7572ζ767ζ7572ζ7473    orthogonal lifted from D14
ρ154000-1-5-1+575+2ζ7276+2ζ774+2ζ7300000ζ54ζ7454ζ735ζ745ζ73ζ53ζ7653ζ752ζ7652ζ7ζ53ζ7553ζ7252ζ7552ζ72ζ54ζ7654ζ75ζ765ζ7ζ54ζ7554ζ725ζ755ζ72ζ53ζ7453ζ7352ζ7452ζ73    orthogonal faithful
ρ164000-1+5-1-574+2ζ7375+2ζ7276+2ζ700000ζ53ζ7653ζ752ζ7652ζ7ζ54ζ7554ζ725ζ755ζ72ζ54ζ7454ζ735ζ745ζ73ζ53ζ7553ζ7252ζ7552ζ72ζ53ζ7453ζ7352ζ7452ζ73ζ54ζ7654ζ75ζ765ζ7    orthogonal faithful
ρ174000-1+5-1-576+2ζ774+2ζ7375+2ζ7200000ζ53ζ7553ζ7252ζ7552ζ72ζ54ζ7454ζ735ζ745ζ73ζ54ζ7654ζ75ζ765ζ7ζ53ζ7453ζ7352ζ7452ζ73ζ53ζ7653ζ752ζ7652ζ7ζ54ζ7554ζ725ζ755ζ72    orthogonal faithful
ρ184000-1-5-1+574+2ζ7375+2ζ7276+2ζ700000ζ54ζ7654ζ75ζ765ζ7ζ53ζ7553ζ7252ζ7552ζ72ζ53ζ7453ζ7352ζ7452ζ73ζ54ζ7554ζ725ζ755ζ72ζ54ζ7454ζ735ζ745ζ73ζ53ζ7653ζ752ζ7652ζ7    orthogonal faithful
ρ194000-1+5-1-575+2ζ7276+2ζ774+2ζ7300000ζ53ζ7453ζ7352ζ7452ζ73ζ54ζ7654ζ75ζ765ζ7ζ54ζ7554ζ725ζ755ζ72ζ53ζ7653ζ752ζ7652ζ7ζ53ζ7553ζ7252ζ7552ζ72ζ54ζ7454ζ735ζ745ζ73    orthogonal faithful
ρ204000-1-5-1+576+2ζ774+2ζ7375+2ζ7200000ζ54ζ7554ζ725ζ755ζ72ζ53ζ7453ζ7352ζ7452ζ73ζ53ζ7653ζ752ζ7652ζ7ζ54ζ7454ζ735ζ745ζ73ζ54ζ7654ζ75ζ765ζ7ζ53ζ7553ζ7252ζ7552ζ72    orthogonal faithful

Smallest permutation representation of D5×D7
On 35 points
Generators in S35
(1 34 27 20 13)(2 35 28 21 14)(3 29 22 15 8)(4 30 23 16 9)(5 31 24 17 10)(6 32 25 18 11)(7 33 26 19 12)
(1 13)(2 14)(3 8)(4 9)(5 10)(6 11)(7 12)(15 29)(16 30)(17 31)(18 32)(19 33)(20 34)(21 35)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)
(1 7)(2 6)(3 5)(8 10)(11 14)(12 13)(15 17)(18 21)(19 20)(22 24)(25 28)(26 27)(29 31)(32 35)(33 34)

G:=sub<Sym(35)| (1,34,27,20,13)(2,35,28,21,14)(3,29,22,15,8)(4,30,23,16,9)(5,31,24,17,10)(6,32,25,18,11)(7,33,26,19,12), (1,13)(2,14)(3,8)(4,9)(5,10)(6,11)(7,12)(15,29)(16,30)(17,31)(18,32)(19,33)(20,34)(21,35), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,17)(18,21)(19,20)(22,24)(25,28)(26,27)(29,31)(32,35)(33,34)>;

G:=Group( (1,34,27,20,13)(2,35,28,21,14)(3,29,22,15,8)(4,30,23,16,9)(5,31,24,17,10)(6,32,25,18,11)(7,33,26,19,12), (1,13)(2,14)(3,8)(4,9)(5,10)(6,11)(7,12)(15,29)(16,30)(17,31)(18,32)(19,33)(20,34)(21,35), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35), (1,7)(2,6)(3,5)(8,10)(11,14)(12,13)(15,17)(18,21)(19,20)(22,24)(25,28)(26,27)(29,31)(32,35)(33,34) );

G=PermutationGroup([[(1,34,27,20,13),(2,35,28,21,14),(3,29,22,15,8),(4,30,23,16,9),(5,31,24,17,10),(6,32,25,18,11),(7,33,26,19,12)], [(1,13),(2,14),(3,8),(4,9),(5,10),(6,11),(7,12),(15,29),(16,30),(17,31),(18,32),(19,33),(20,34),(21,35)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35)], [(1,7),(2,6),(3,5),(8,10),(11,14),(12,13),(15,17),(18,21),(19,20),(22,24),(25,28),(26,27),(29,31),(32,35),(33,34)]])

D5×D7 is a maximal subgroup of   D15⋊D7
D5×D7 is a maximal quotient of   D70.C2  C35⋊D4  C5⋊D28  C7⋊D20  C35⋊Q8  D15⋊D7

Matrix representation of D5×D7 in GL4(𝔽71) generated by

1000
0100
00617
003518
,
1000
0100
00700
00671
,
70100
551500
0010
0001
,
70000
55100
0010
0001
G:=sub<GL(4,GF(71))| [1,0,0,0,0,1,0,0,0,0,61,35,0,0,7,18],[1,0,0,0,0,1,0,0,0,0,70,67,0,0,0,1],[70,55,0,0,1,15,0,0,0,0,1,0,0,0,0,1],[70,55,0,0,0,1,0,0,0,0,1,0,0,0,0,1] >;

D5×D7 in GAP, Magma, Sage, TeX

D_5\times D_7
% in TeX

G:=Group("D5xD7");
// GroupNames label

G:=SmallGroup(140,7);
// by ID

G=gap.SmallGroup(140,7);
# by ID

G:=PCGroup([4,-2,-2,-5,-7,102,1923]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^2=c^7=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

Export

Subgroup lattice of D5×D7 in TeX
Character table of D5×D7 in TeX

׿
×
𝔽