Extensions 1→N→G→Q→1 with N=C2×C4 and Q=D17

Direct product G=N×Q with N=C2×C4 and Q=D17
dρLabelID
C2×C4×D17136C2xC4xD17272,37

Semidirect products G=N:Q with N=C2×C4 and Q=D17
extensionφ:Q→Aut NdρLabelID
(C2×C4)⋊1D17 = D34⋊C4φ: D17/C17C2 ⊆ Aut C2×C4136(C2xC4):1D17272,14
(C2×C4)⋊2D17 = C2×D68φ: D17/C17C2 ⊆ Aut C2×C4136(C2xC4):2D17272,38
(C2×C4)⋊3D17 = D685C2φ: D17/C17C2 ⊆ Aut C2×C41362(C2xC4):3D17272,39

Non-split extensions G=N.Q with N=C2×C4 and Q=D17
extensionφ:Q→Aut NdρLabelID
(C2×C4).1D17 = C34.D4φ: D17/C17C2 ⊆ Aut C2×C4272(C2xC4).1D17272,12
(C2×C4).2D17 = C68.4C4φ: D17/C17C2 ⊆ Aut C2×C41362(C2xC4).2D17272,10
(C2×C4).3D17 = C683C4φ: D17/C17C2 ⊆ Aut C2×C4272(C2xC4).3D17272,13
(C2×C4).4D17 = C2×Dic34φ: D17/C17C2 ⊆ Aut C2×C4272(C2xC4).4D17272,36
(C2×C4).5D17 = C2×C173C8central extension (φ=1)272(C2xC4).5D17272,9
(C2×C4).6D17 = C4×Dic17central extension (φ=1)272(C2xC4).6D17272,11

׿
×
𝔽