Extensions 1→N→G→Q→1 with N=C4 and Q=D4×C9

Direct product G=N×Q with N=C4 and Q=D4×C9
dρLabelID
D4×C36144D4xC36288,168

Semidirect products G=N:Q with N=C4 and Q=D4×C9
extensionφ:Q→Aut NdρLabelID
C41(D4×C9) = C9×C41D4φ: D4×C9/C36C2 ⊆ Aut C4144C4:1(D4xC9)288,177
C42(D4×C9) = C9×C4⋊D4φ: D4×C9/C2×C18C2 ⊆ Aut C4144C4:2(D4xC9)288,171

Non-split extensions G=N.Q with N=C4 and Q=D4×C9
extensionφ:Q→Aut NdρLabelID
C4.1(D4×C9) = C9×D16φ: D4×C9/C36C2 ⊆ Aut C41442C4.1(D4xC9)288,61
C4.2(D4×C9) = C9×SD32φ: D4×C9/C36C2 ⊆ Aut C41442C4.2(D4xC9)288,62
C4.3(D4×C9) = C9×Q32φ: D4×C9/C36C2 ⊆ Aut C42882C4.3(D4xC9)288,63
C4.4(D4×C9) = C9×C4.4D4φ: D4×C9/C36C2 ⊆ Aut C4144C4.4(D4xC9)288,174
C4.5(D4×C9) = C9×C4⋊Q8φ: D4×C9/C36C2 ⊆ Aut C4288C4.5(D4xC9)288,178
C4.6(D4×C9) = D8×C18φ: D4×C9/C36C2 ⊆ Aut C4144C4.6(D4xC9)288,182
C4.7(D4×C9) = SD16×C18φ: D4×C9/C36C2 ⊆ Aut C4144C4.7(D4xC9)288,183
C4.8(D4×C9) = Q16×C18φ: D4×C9/C36C2 ⊆ Aut C4288C4.8(D4xC9)288,184
C4.9(D4×C9) = C9×C4.D4φ: D4×C9/C2×C18C2 ⊆ Aut C4724C4.9(D4xC9)288,50
C4.10(D4×C9) = C9×C4.10D4φ: D4×C9/C2×C18C2 ⊆ Aut C41444C4.10(D4xC9)288,51
C4.11(D4×C9) = C9×D4⋊C4φ: D4×C9/C2×C18C2 ⊆ Aut C4144C4.11(D4xC9)288,52
C4.12(D4×C9) = C9×Q8⋊C4φ: D4×C9/C2×C18C2 ⊆ Aut C4288C4.12(D4xC9)288,53
C4.13(D4×C9) = C9×C22⋊Q8φ: D4×C9/C2×C18C2 ⊆ Aut C4144C4.13(D4xC9)288,172
C4.14(D4×C9) = C9×C8⋊C22φ: D4×C9/C2×C18C2 ⊆ Aut C4724C4.14(D4xC9)288,186
C4.15(D4×C9) = C9×C8.C22φ: D4×C9/C2×C18C2 ⊆ Aut C41444C4.15(D4xC9)288,187
C4.16(D4×C9) = C9×C22⋊C8central extension (φ=1)144C4.16(D4xC9)288,48
C4.17(D4×C9) = C9×C4≀C2central extension (φ=1)722C4.17(D4xC9)288,54
C4.18(D4×C9) = C9×C4⋊C8central extension (φ=1)288C4.18(D4xC9)288,55
C4.19(D4×C9) = C9×C8.C4central extension (φ=1)1442C4.19(D4xC9)288,58
C4.20(D4×C9) = C9×C4○D8central extension (φ=1)1442C4.20(D4xC9)288,185

׿
×
𝔽