Extensions 1→N→G→Q→1 with N=C3×D4 and Q=Dic3

Direct product G=N×Q with N=C3×D4 and Q=Dic3
dρLabelID
C3×D4×Dic348C3xD4xDic3288,705

Semidirect products G=N:Q with N=C3×D4 and Q=Dic3
extensionφ:Q→Out NdρLabelID
(C3×D4)⋊1Dic3 = C62.116D4φ: Dic3/C6C2 ⊆ Out C3×D4144(C3xD4):1Dic3288,307
(C3×D4)⋊2Dic3 = C62.39D4φ: Dic3/C6C2 ⊆ Out C3×D472(C3xD4):2Dic3288,312
(C3×D4)⋊3Dic3 = D4×C3⋊Dic3φ: Dic3/C6C2 ⊆ Out C3×D4144(C3xD4):3Dic3288,791
(C3×D4)⋊4Dic3 = C3×D4⋊Dic3φ: Dic3/C6C2 ⊆ Out C3×D448(C3xD4):4Dic3288,266
(C3×D4)⋊5Dic3 = C3×Q83Dic3φ: Dic3/C6C2 ⊆ Out C3×D4484(C3xD4):5Dic3288,271

Non-split extensions G=N.Q with N=C3×D4 and Q=Dic3
extensionφ:Q→Out NdρLabelID
(C3×D4).1Dic3 = D4⋊Dic9φ: Dic3/C6C2 ⊆ Out C3×D4144(C3xD4).1Dic3288,40
(C3×D4).2Dic3 = Q83Dic9φ: Dic3/C6C2 ⊆ Out C3×D4724(C3xD4).2Dic3288,44
(C3×D4).3Dic3 = D4×Dic9φ: Dic3/C6C2 ⊆ Out C3×D4144(C3xD4).3Dic3288,144
(C3×D4).4Dic3 = D4.Dic9φ: Dic3/C6C2 ⊆ Out C3×D41444(C3xD4).4Dic3288,158
(C3×D4).5Dic3 = D4.(C3⋊Dic3)φ: Dic3/C6C2 ⊆ Out C3×D4144(C3xD4).5Dic3288,805
(C3×D4).6Dic3 = C3×D4.Dic3φ: trivial image484(C3xD4).6Dic3288,719

׿
×
𝔽