Copied to
clipboard

G = D4.(C3⋊Dic3)  order 288 = 25·32

The non-split extension by D4 of C3⋊Dic3 acting through Inn(D4)

metabelian, supersoluble, monomial

Aliases: D4.(C3⋊Dic3), (C2×C12).160D6, C3214(C8○D4), C62.65(C2×C4), (C3×Q8).9Dic3, (C3×D4).5Dic3, (D4×C32).3C4, (Q8×C32).3C4, Q8.2(C3⋊Dic3), C33(D4.Dic3), C12.21(C2×Dic3), C12.58D614C2, (C3×C12).182C23, C12.213(C22×S3), (C6×C12).152C22, C6.38(C22×Dic3), C324C8.41C22, C4.5(C2×C3⋊Dic3), (C3×C12).76(C2×C4), C4○D4.5(C3⋊S3), (C3×C4○D4).18S3, C4.42(C22×C3⋊S3), (C2×C324C8)⋊12C2, (C2×C6).10(C2×Dic3), (C32×C4○D4).5C2, C2.8(C22×C3⋊Dic3), C22.1(C2×C3⋊Dic3), (C3×C6).126(C22×C4), (C2×C4).58(C2×C3⋊S3), SmallGroup(288,805)

Series: Derived Chief Lower central Upper central

C1C3×C6 — D4.(C3⋊Dic3)
C1C3C32C3×C6C3×C12C324C8C2×C324C8 — D4.(C3⋊Dic3)
C32C3×C6 — D4.(C3⋊Dic3)
C1C4C4○D4

Generators and relations for D4.(C3⋊Dic3)
 G = < a,b,c,d,e | a4=b2=c3=1, d6=a2, e2=a2d3, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece-1=c-1, ede-1=d5 >

Subgroups: 380 in 186 conjugacy classes, 113 normal (12 characteristic)
C1, C2, C2, C3, C4, C4, C22, C6, C6, C8, C2×C4, D4, Q8, C32, C12, C2×C6, C2×C8, M4(2), C4○D4, C3×C6, C3×C6, C3⋊C8, C2×C12, C3×D4, C3×Q8, C8○D4, C3×C12, C3×C12, C62, C2×C3⋊C8, C4.Dic3, C3×C4○D4, C324C8, C324C8, C6×C12, D4×C32, Q8×C32, D4.Dic3, C2×C324C8, C12.58D6, C32×C4○D4, D4.(C3⋊Dic3)
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, Dic3, D6, C22×C4, C3⋊S3, C2×Dic3, C22×S3, C8○D4, C3⋊Dic3, C2×C3⋊S3, C22×Dic3, C2×C3⋊Dic3, C22×C3⋊S3, D4.Dic3, C22×C3⋊Dic3, D4.(C3⋊Dic3)

Smallest permutation representation of D4.(C3⋊Dic3)
On 144 points
Generators in S144
(1 31 7 25)(2 32 8 26)(3 33 9 27)(4 34 10 28)(5 35 11 29)(6 36 12 30)(13 51 19 57)(14 52 20 58)(15 53 21 59)(16 54 22 60)(17 55 23 49)(18 56 24 50)(37 75 43 81)(38 76 44 82)(39 77 45 83)(40 78 46 84)(41 79 47 73)(42 80 48 74)(61 121 67 127)(62 122 68 128)(63 123 69 129)(64 124 70 130)(65 125 71 131)(66 126 72 132)(85 114 91 120)(86 115 92 109)(87 116 93 110)(88 117 94 111)(89 118 95 112)(90 119 96 113)(97 136 103 142)(98 137 104 143)(99 138 105 144)(100 139 106 133)(101 140 107 134)(102 141 108 135)
(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)(37 43)(38 44)(39 45)(40 46)(41 47)(42 48)(49 55)(50 56)(51 57)(52 58)(53 59)(54 60)(61 67)(62 68)(63 69)(64 70)(65 71)(66 72)(85 91)(86 92)(87 93)(88 94)(89 95)(90 96)(133 139)(134 140)(135 141)(136 142)(137 143)(138 144)
(1 75 118)(2 76 119)(3 77 120)(4 78 109)(5 79 110)(6 80 111)(7 81 112)(8 82 113)(9 83 114)(10 84 115)(11 73 116)(12 74 117)(13 107 122)(14 108 123)(15 97 124)(16 98 125)(17 99 126)(18 100 127)(19 101 128)(20 102 129)(21 103 130)(22 104 131)(23 105 132)(24 106 121)(25 37 89)(26 38 90)(27 39 91)(28 40 92)(29 41 93)(30 42 94)(31 43 95)(32 44 96)(33 45 85)(34 46 86)(35 47 87)(36 48 88)(49 144 66)(50 133 67)(51 134 68)(52 135 69)(53 136 70)(54 137 71)(55 138 72)(56 139 61)(57 140 62)(58 141 63)(59 142 64)(60 143 65)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144)
(1 129 10 126 7 123 4 132)(2 122 11 131 8 128 5 125)(3 127 12 124 9 121 6 130)(13 116 22 113 19 110 16 119)(14 109 23 118 20 115 17 112)(15 114 24 111 21 120 18 117)(25 69 34 66 31 63 28 72)(26 62 35 71 32 68 29 65)(27 67 36 64 33 61 30 70)(37 135 46 144 43 141 40 138)(38 140 47 137 44 134 41 143)(39 133 48 142 45 139 42 136)(49 95 58 92 55 89 52 86)(50 88 59 85 56 94 53 91)(51 93 60 90 57 87 54 96)(73 104 82 101 79 98 76 107)(74 97 83 106 80 103 77 100)(75 102 84 99 81 108 78 105)

G:=sub<Sym(144)| (1,31,7,25)(2,32,8,26)(3,33,9,27)(4,34,10,28)(5,35,11,29)(6,36,12,30)(13,51,19,57)(14,52,20,58)(15,53,21,59)(16,54,22,60)(17,55,23,49)(18,56,24,50)(37,75,43,81)(38,76,44,82)(39,77,45,83)(40,78,46,84)(41,79,47,73)(42,80,48,74)(61,121,67,127)(62,122,68,128)(63,123,69,129)(64,124,70,130)(65,125,71,131)(66,126,72,132)(85,114,91,120)(86,115,92,109)(87,116,93,110)(88,117,94,111)(89,118,95,112)(90,119,96,113)(97,136,103,142)(98,137,104,143)(99,138,105,144)(100,139,106,133)(101,140,107,134)(102,141,108,135), (25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48)(49,55)(50,56)(51,57)(52,58)(53,59)(54,60)(61,67)(62,68)(63,69)(64,70)(65,71)(66,72)(85,91)(86,92)(87,93)(88,94)(89,95)(90,96)(133,139)(134,140)(135,141)(136,142)(137,143)(138,144), (1,75,118)(2,76,119)(3,77,120)(4,78,109)(5,79,110)(6,80,111)(7,81,112)(8,82,113)(9,83,114)(10,84,115)(11,73,116)(12,74,117)(13,107,122)(14,108,123)(15,97,124)(16,98,125)(17,99,126)(18,100,127)(19,101,128)(20,102,129)(21,103,130)(22,104,131)(23,105,132)(24,106,121)(25,37,89)(26,38,90)(27,39,91)(28,40,92)(29,41,93)(30,42,94)(31,43,95)(32,44,96)(33,45,85)(34,46,86)(35,47,87)(36,48,88)(49,144,66)(50,133,67)(51,134,68)(52,135,69)(53,136,70)(54,137,71)(55,138,72)(56,139,61)(57,140,62)(58,141,63)(59,142,64)(60,143,65), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,129,10,126,7,123,4,132)(2,122,11,131,8,128,5,125)(3,127,12,124,9,121,6,130)(13,116,22,113,19,110,16,119)(14,109,23,118,20,115,17,112)(15,114,24,111,21,120,18,117)(25,69,34,66,31,63,28,72)(26,62,35,71,32,68,29,65)(27,67,36,64,33,61,30,70)(37,135,46,144,43,141,40,138)(38,140,47,137,44,134,41,143)(39,133,48,142,45,139,42,136)(49,95,58,92,55,89,52,86)(50,88,59,85,56,94,53,91)(51,93,60,90,57,87,54,96)(73,104,82,101,79,98,76,107)(74,97,83,106,80,103,77,100)(75,102,84,99,81,108,78,105)>;

G:=Group( (1,31,7,25)(2,32,8,26)(3,33,9,27)(4,34,10,28)(5,35,11,29)(6,36,12,30)(13,51,19,57)(14,52,20,58)(15,53,21,59)(16,54,22,60)(17,55,23,49)(18,56,24,50)(37,75,43,81)(38,76,44,82)(39,77,45,83)(40,78,46,84)(41,79,47,73)(42,80,48,74)(61,121,67,127)(62,122,68,128)(63,123,69,129)(64,124,70,130)(65,125,71,131)(66,126,72,132)(85,114,91,120)(86,115,92,109)(87,116,93,110)(88,117,94,111)(89,118,95,112)(90,119,96,113)(97,136,103,142)(98,137,104,143)(99,138,105,144)(100,139,106,133)(101,140,107,134)(102,141,108,135), (25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(37,43)(38,44)(39,45)(40,46)(41,47)(42,48)(49,55)(50,56)(51,57)(52,58)(53,59)(54,60)(61,67)(62,68)(63,69)(64,70)(65,71)(66,72)(85,91)(86,92)(87,93)(88,94)(89,95)(90,96)(133,139)(134,140)(135,141)(136,142)(137,143)(138,144), (1,75,118)(2,76,119)(3,77,120)(4,78,109)(5,79,110)(6,80,111)(7,81,112)(8,82,113)(9,83,114)(10,84,115)(11,73,116)(12,74,117)(13,107,122)(14,108,123)(15,97,124)(16,98,125)(17,99,126)(18,100,127)(19,101,128)(20,102,129)(21,103,130)(22,104,131)(23,105,132)(24,106,121)(25,37,89)(26,38,90)(27,39,91)(28,40,92)(29,41,93)(30,42,94)(31,43,95)(32,44,96)(33,45,85)(34,46,86)(35,47,87)(36,48,88)(49,144,66)(50,133,67)(51,134,68)(52,135,69)(53,136,70)(54,137,71)(55,138,72)(56,139,61)(57,140,62)(58,141,63)(59,142,64)(60,143,65), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144), (1,129,10,126,7,123,4,132)(2,122,11,131,8,128,5,125)(3,127,12,124,9,121,6,130)(13,116,22,113,19,110,16,119)(14,109,23,118,20,115,17,112)(15,114,24,111,21,120,18,117)(25,69,34,66,31,63,28,72)(26,62,35,71,32,68,29,65)(27,67,36,64,33,61,30,70)(37,135,46,144,43,141,40,138)(38,140,47,137,44,134,41,143)(39,133,48,142,45,139,42,136)(49,95,58,92,55,89,52,86)(50,88,59,85,56,94,53,91)(51,93,60,90,57,87,54,96)(73,104,82,101,79,98,76,107)(74,97,83,106,80,103,77,100)(75,102,84,99,81,108,78,105) );

G=PermutationGroup([[(1,31,7,25),(2,32,8,26),(3,33,9,27),(4,34,10,28),(5,35,11,29),(6,36,12,30),(13,51,19,57),(14,52,20,58),(15,53,21,59),(16,54,22,60),(17,55,23,49),(18,56,24,50),(37,75,43,81),(38,76,44,82),(39,77,45,83),(40,78,46,84),(41,79,47,73),(42,80,48,74),(61,121,67,127),(62,122,68,128),(63,123,69,129),(64,124,70,130),(65,125,71,131),(66,126,72,132),(85,114,91,120),(86,115,92,109),(87,116,93,110),(88,117,94,111),(89,118,95,112),(90,119,96,113),(97,136,103,142),(98,137,104,143),(99,138,105,144),(100,139,106,133),(101,140,107,134),(102,141,108,135)], [(25,31),(26,32),(27,33),(28,34),(29,35),(30,36),(37,43),(38,44),(39,45),(40,46),(41,47),(42,48),(49,55),(50,56),(51,57),(52,58),(53,59),(54,60),(61,67),(62,68),(63,69),(64,70),(65,71),(66,72),(85,91),(86,92),(87,93),(88,94),(89,95),(90,96),(133,139),(134,140),(135,141),(136,142),(137,143),(138,144)], [(1,75,118),(2,76,119),(3,77,120),(4,78,109),(5,79,110),(6,80,111),(7,81,112),(8,82,113),(9,83,114),(10,84,115),(11,73,116),(12,74,117),(13,107,122),(14,108,123),(15,97,124),(16,98,125),(17,99,126),(18,100,127),(19,101,128),(20,102,129),(21,103,130),(22,104,131),(23,105,132),(24,106,121),(25,37,89),(26,38,90),(27,39,91),(28,40,92),(29,41,93),(30,42,94),(31,43,95),(32,44,96),(33,45,85),(34,46,86),(35,47,87),(36,48,88),(49,144,66),(50,133,67),(51,134,68),(52,135,69),(53,136,70),(54,137,71),(55,138,72),(56,139,61),(57,140,62),(58,141,63),(59,142,64),(60,143,65)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144)], [(1,129,10,126,7,123,4,132),(2,122,11,131,8,128,5,125),(3,127,12,124,9,121,6,130),(13,116,22,113,19,110,16,119),(14,109,23,118,20,115,17,112),(15,114,24,111,21,120,18,117),(25,69,34,66,31,63,28,72),(26,62,35,71,32,68,29,65),(27,67,36,64,33,61,30,70),(37,135,46,144,43,141,40,138),(38,140,47,137,44,134,41,143),(39,133,48,142,45,139,42,136),(49,95,58,92,55,89,52,86),(50,88,59,85,56,94,53,91),(51,93,60,90,57,87,54,96),(73,104,82,101,79,98,76,107),(74,97,83,106,80,103,77,100),(75,102,84,99,81,108,78,105)]])

60 conjugacy classes

class 1 2A2B2C2D3A3B3C3D4A4B4C4D4E6A6B6C6D6E···6P8A8B8C8D8E···8J12A···12H12I···12T
order1222233334444466666···688888···812···1212···12
size1122222221122222224···4999918···182···24···4

60 irreducible representations

dim111111222224
type++++++--
imageC1C2C2C2C4C4S3D6Dic3Dic3C8○D4D4.Dic3
kernelD4.(C3⋊Dic3)C2×C324C8C12.58D6C32×C4○D4D4×C32Q8×C32C3×C4○D4C2×C12C3×D4C3×Q8C32C3
# reps13316241212448

Matrix representation of D4.(C3⋊Dic3) in GL6(𝔽73)

7220000
7210000
001000
000100
0000720
0000072
,
100000
1720000
001000
000100
000010
000001
,
100000
010000
0072100
0072000
0000721
0000720
,
4600000
0460000
0072100
0072000
000010
000001
,
5100000
0510000
0060200
00621300
00001929
00004854

G:=sub<GL(6,GF(73))| [72,72,0,0,0,0,2,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[1,1,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,1,0,0,0,0,0,0,0,72,72,0,0,0,0,1,0],[46,0,0,0,0,0,0,46,0,0,0,0,0,0,72,72,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[51,0,0,0,0,0,0,51,0,0,0,0,0,0,60,62,0,0,0,0,2,13,0,0,0,0,0,0,19,48,0,0,0,0,29,54] >;

D4.(C3⋊Dic3) in GAP, Magma, Sage, TeX

D_4.(C_3\rtimes {\rm Dic}_3)
% in TeX

G:=Group("D4.(C3:Dic3)");
// GroupNames label

G:=SmallGroup(288,805);
// by ID

G=gap.SmallGroup(288,805);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,56,219,80,2693,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^2=c^3=1,d^6=a^2,e^2=a^2*d^3,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=c^-1,e*d*e^-1=d^5>;
// generators/relations

׿
×
𝔽