metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: Q8⋊3Dic9, D4⋊2Dic9, C36.56D4, C9⋊3C4≀C2, (D4×C9)⋊2C4, (Q8×C9)⋊2C4, C36.9(C2×C4), C4○D4.3D9, (C2×C18).3D4, (C4×Dic9)⋊2C2, (C2×C12).49D6, (C2×C4).43D18, C4.Dic9⋊4C2, C4.3(C2×Dic9), C4.31(C9⋊D4), (C3×Q8).6Dic3, (C3×D4).2Dic3, C12.3(C2×Dic3), C3.(Q8⋊3Dic3), (C2×C36).27C22, C22.3(C9⋊D4), C12.126(C3⋊D4), C18.18(C22⋊C4), C2.8(C18.D4), C6.19(C6.D4), (C3×C4○D4).9S3, (C9×C4○D4).1C2, (C2×C6).3(C3⋊D4), SmallGroup(288,44)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for Q8⋊3Dic9
G = < a,b,c,d | a4=c18=1, b2=a2, d2=c9, bab-1=a-1, ac=ca, ad=da, cbc-1=a2b, dbd-1=a-1b, dcd-1=c-1 >
Subgroups: 212 in 66 conjugacy classes, 30 normal (all characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, D4, D4, Q8, C9, Dic3, C12, C12, C2×C6, C2×C6, C42, M4(2), C4○D4, C18, C18, C3⋊C8, C2×Dic3, C2×C12, C2×C12, C3×D4, C3×D4, C3×Q8, C4≀C2, Dic9, C36, C36, C2×C18, C2×C18, C4.Dic3, C4×Dic3, C3×C4○D4, C9⋊C8, C2×Dic9, C2×C36, C2×C36, D4×C9, D4×C9, Q8×C9, Q8⋊3Dic3, C4.Dic9, C4×Dic9, C9×C4○D4, Q8⋊3Dic9
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, Dic3, D6, C22⋊C4, D9, C2×Dic3, C3⋊D4, C4≀C2, Dic9, D18, C6.D4, C2×Dic9, C9⋊D4, Q8⋊3Dic3, C18.D4, Q8⋊3Dic9
(1 25 14 31)(2 26 15 32)(3 27 16 33)(4 19 17 34)(5 20 18 35)(6 21 10 36)(7 22 11 28)(8 23 12 29)(9 24 13 30)(37 55 46 64)(38 56 47 65)(39 57 48 66)(40 58 49 67)(41 59 50 68)(42 60 51 69)(43 61 52 70)(44 62 53 71)(45 63 54 72)
(1 56 14 65)(2 66 15 57)(3 58 16 67)(4 68 17 59)(5 60 18 69)(6 70 10 61)(7 62 11 71)(8 72 12 63)(9 64 13 55)(19 50 34 41)(20 42 35 51)(21 52 36 43)(22 44 28 53)(23 54 29 45)(24 46 30 37)(25 38 31 47)(26 48 32 39)(27 40 33 49)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)
(1 4)(2 3)(5 9)(6 8)(10 12)(13 18)(14 17)(15 16)(19 25)(20 24)(21 23)(26 27)(29 36)(30 35)(31 34)(32 33)(37 60 46 69)(38 59 47 68)(39 58 48 67)(40 57 49 66)(41 56 50 65)(42 55 51 64)(43 72 52 63)(44 71 53 62)(45 70 54 61)
G:=sub<Sym(72)| (1,25,14,31)(2,26,15,32)(3,27,16,33)(4,19,17,34)(5,20,18,35)(6,21,10,36)(7,22,11,28)(8,23,12,29)(9,24,13,30)(37,55,46,64)(38,56,47,65)(39,57,48,66)(40,58,49,67)(41,59,50,68)(42,60,51,69)(43,61,52,70)(44,62,53,71)(45,63,54,72), (1,56,14,65)(2,66,15,57)(3,58,16,67)(4,68,17,59)(5,60,18,69)(6,70,10,61)(7,62,11,71)(8,72,12,63)(9,64,13,55)(19,50,34,41)(20,42,35,51)(21,52,36,43)(22,44,28,53)(23,54,29,45)(24,46,30,37)(25,38,31,47)(26,48,32,39)(27,40,33,49), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,4)(2,3)(5,9)(6,8)(10,12)(13,18)(14,17)(15,16)(19,25)(20,24)(21,23)(26,27)(29,36)(30,35)(31,34)(32,33)(37,60,46,69)(38,59,47,68)(39,58,48,67)(40,57,49,66)(41,56,50,65)(42,55,51,64)(43,72,52,63)(44,71,53,62)(45,70,54,61)>;
G:=Group( (1,25,14,31)(2,26,15,32)(3,27,16,33)(4,19,17,34)(5,20,18,35)(6,21,10,36)(7,22,11,28)(8,23,12,29)(9,24,13,30)(37,55,46,64)(38,56,47,65)(39,57,48,66)(40,58,49,67)(41,59,50,68)(42,60,51,69)(43,61,52,70)(44,62,53,71)(45,63,54,72), (1,56,14,65)(2,66,15,57)(3,58,16,67)(4,68,17,59)(5,60,18,69)(6,70,10,61)(7,62,11,71)(8,72,12,63)(9,64,13,55)(19,50,34,41)(20,42,35,51)(21,52,36,43)(22,44,28,53)(23,54,29,45)(24,46,30,37)(25,38,31,47)(26,48,32,39)(27,40,33,49), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72), (1,4)(2,3)(5,9)(6,8)(10,12)(13,18)(14,17)(15,16)(19,25)(20,24)(21,23)(26,27)(29,36)(30,35)(31,34)(32,33)(37,60,46,69)(38,59,47,68)(39,58,48,67)(40,57,49,66)(41,56,50,65)(42,55,51,64)(43,72,52,63)(44,71,53,62)(45,70,54,61) );
G=PermutationGroup([[(1,25,14,31),(2,26,15,32),(3,27,16,33),(4,19,17,34),(5,20,18,35),(6,21,10,36),(7,22,11,28),(8,23,12,29),(9,24,13,30),(37,55,46,64),(38,56,47,65),(39,57,48,66),(40,58,49,67),(41,59,50,68),(42,60,51,69),(43,61,52,70),(44,62,53,71),(45,63,54,72)], [(1,56,14,65),(2,66,15,57),(3,58,16,67),(4,68,17,59),(5,60,18,69),(6,70,10,61),(7,62,11,71),(8,72,12,63),(9,64,13,55),(19,50,34,41),(20,42,35,51),(21,52,36,43),(22,44,28,53),(23,54,29,45),(24,46,30,37),(25,38,31,47),(26,48,32,39),(27,40,33,49)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)], [(1,4),(2,3),(5,9),(6,8),(10,12),(13,18),(14,17),(15,16),(19,25),(20,24),(21,23),(26,27),(29,36),(30,35),(31,34),(32,33),(37,60,46,69),(38,59,47,68),(39,58,48,67),(40,57,49,66),(41,56,50,65),(42,55,51,64),(43,72,52,63),(44,71,53,62),(45,70,54,61)]])
54 conjugacy classes
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 6A | 6B | 6C | 6D | 8A | 8B | 9A | 9B | 9C | 12A | 12B | 12C | 12D | 12E | 18A | 18B | 18C | 18D | ··· | 18L | 36A | ··· | 36F | 36G | ··· | 36O |
order | 1 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 6 | 8 | 8 | 9 | 9 | 9 | 12 | 12 | 12 | 12 | 12 | 18 | 18 | 18 | 18 | ··· | 18 | 36 | ··· | 36 | 36 | ··· | 36 |
size | 1 | 1 | 2 | 4 | 2 | 1 | 1 | 2 | 4 | 18 | 18 | 18 | 18 | 2 | 4 | 4 | 4 | 36 | 36 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 2 | 2 | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
54 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | - | - | + | + | - | - | |||||||||
image | C1 | C2 | C2 | C2 | C4 | C4 | S3 | D4 | D4 | D6 | Dic3 | Dic3 | D9 | C3⋊D4 | C3⋊D4 | C4≀C2 | D18 | Dic9 | Dic9 | C9⋊D4 | C9⋊D4 | Q8⋊3Dic3 | Q8⋊3Dic9 |
kernel | Q8⋊3Dic9 | C4.Dic9 | C4×Dic9 | C9×C4○D4 | D4×C9 | Q8×C9 | C3×C4○D4 | C36 | C2×C18 | C2×C12 | C3×D4 | C3×Q8 | C4○D4 | C12 | C2×C6 | C9 | C2×C4 | D4 | Q8 | C4 | C22 | C3 | C1 |
# reps | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 2 | 2 | 4 | 3 | 3 | 3 | 6 | 6 | 2 | 6 |
Matrix representation of Q8⋊3Dic9 ►in GL4(𝔽73) generated by
27 | 0 | 0 | 0 |
0 | 46 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
0 | 27 | 0 | 0 |
27 | 0 | 0 | 0 |
0 | 0 | 72 | 0 |
0 | 0 | 0 | 72 |
72 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 45 | 31 |
0 | 0 | 42 | 3 |
46 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 |
0 | 0 | 1 | 0 |
G:=sub<GL(4,GF(73))| [27,0,0,0,0,46,0,0,0,0,1,0,0,0,0,1],[0,27,0,0,27,0,0,0,0,0,72,0,0,0,0,72],[72,0,0,0,0,1,0,0,0,0,45,42,0,0,31,3],[46,0,0,0,0,1,0,0,0,0,0,1,0,0,1,0] >;
Q8⋊3Dic9 in GAP, Magma, Sage, TeX
Q_8\rtimes_3{\rm Dic}_9
% in TeX
G:=Group("Q8:3Dic9");
// GroupNames label
G:=SmallGroup(288,44);
// by ID
G=gap.SmallGroup(288,44);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,28,141,100,675,346,80,6725,292,9414]);
// Polycyclic
G:=Group<a,b,c,d|a^4=c^18=1,b^2=a^2,d^2=c^9,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=a^2*b,d*b*d^-1=a^-1*b,d*c*d^-1=c^-1>;
// generators/relations