Extensions 1→N→G→Q→1 with N=C2×C3⋊S3 and Q=C8

Direct product G=N×Q with N=C2×C3⋊S3 and Q=C8
dρLabelID
C2×C8×C3⋊S3144C2xC8xC3:S3288,756

Semidirect products G=N:Q with N=C2×C3⋊S3 and Q=C8
extensionφ:Q→Out NdρLabelID
(C2×C3⋊S3)⋊1C8 = C22⋊F9φ: C8/C2C4 ⊆ Out C2×C3⋊S3248+(C2xC3:S3):1C8288,867
(C2×C3⋊S3)⋊2C8 = C22×F9φ: C8/C2C4 ⊆ Out C2×C3⋊S336(C2xC3:S3):2C8288,1030
(C2×C3⋊S3)⋊3C8 = C12.78D12φ: C8/C4C2 ⊆ Out C2×C3⋊S348(C2xC3:S3):3C8288,205
(C2×C3⋊S3)⋊4C8 = C12.60D12φ: C8/C4C2 ⊆ Out C2×C3⋊S3144(C2xC3:S3):4C8288,295
(C2×C3⋊S3)⋊5C8 = C62.6(C2×C4)φ: C8/C4C2 ⊆ Out C2×C3⋊S348(C2xC3:S3):5C8288,426
(C2×C3⋊S3)⋊6C8 = C2×C12.29D6φ: C8/C4C2 ⊆ Out C2×C3⋊S348(C2xC3:S3):6C8288,464
(C2×C3⋊S3)⋊7C8 = C2×C3⋊S33C8φ: C8/C4C2 ⊆ Out C2×C3⋊S348(C2xC3:S3):7C8288,929

Non-split extensions G=N.Q with N=C2×C3⋊S3 and Q=C8
extensionφ:Q→Out NdρLabelID
(C2×C3⋊S3).1C8 = C4.3F9φ: C8/C2C4 ⊆ Out C2×C3⋊S3488(C2xC3:S3).1C8288,861
(C2×C3⋊S3).2C8 = C4.F9φ: C8/C2C4 ⊆ Out C2×C3⋊S3488(C2xC3:S3).2C8288,862
(C2×C3⋊S3).3C8 = C24.60D6φ: C8/C4C2 ⊆ Out C2×C3⋊S3484(C2xC3:S3).3C8288,190
(C2×C3⋊S3).4C8 = C24.62D6φ: C8/C4C2 ⊆ Out C2×C3⋊S3484(C2xC3:S3).4C8288,192
(C2×C3⋊S3).5C8 = C48⋊S3φ: C8/C4C2 ⊆ Out C2×C3⋊S3144(C2xC3:S3).5C8288,273
(C2×C3⋊S3).6C8 = C3⋊S33C16φ: C8/C4C2 ⊆ Out C2×C3⋊S3484(C2xC3:S3).6C8288,412
(C2×C3⋊S3).7C8 = C323M5(2)φ: C8/C4C2 ⊆ Out C2×C3⋊S3484(C2xC3:S3).7C8288,413
(C2×C3⋊S3).8C8 = C16×C3⋊S3φ: trivial image144(C2xC3:S3).8C8288,272

׿
×
𝔽