direct product, metabelian, soluble, monomial, A-group
Aliases: C2×C3⋊S3⋊3C8, (C6×C12).9C4, C32⋊3(C22×C8), C62.13(C2×C4), C32⋊2C8⋊10C22, C3⋊Dic3.29C23, (C2×C3⋊S3)⋊7C8, C3⋊S3⋊4(C2×C8), (C3×C6)⋊2(C2×C8), (C4×C3⋊S3).15C4, C4.21(C2×C32⋊C4), (C3×C12).18(C2×C4), C2.1(C22×C32⋊C4), (C2×C32⋊2C8)⋊10C2, (C4×C3⋊S3).95C22, (C22×C3⋊S3).14C4, (C2×C4).11(C32⋊C4), C3⋊Dic3.50(C2×C4), (C3×C6).24(C22×C4), C22.15(C2×C32⋊C4), (C2×C3⋊Dic3).172C22, (C2×C4×C3⋊S3).25C2, (C2×C3⋊S3).44(C2×C4), SmallGroup(288,929)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C32 — C3×C6 — C3⋊Dic3 — C32⋊2C8 — C2×C32⋊2C8 — C2×C3⋊S3⋊3C8 |
C32 — C2×C3⋊S3⋊3C8 |
Generators and relations for C2×C3⋊S3⋊3C8
G = < a,b,c,d,e | a2=b3=c3=d2=e8=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, dbd=b-1, ebe-1=bc-1, dcd=c-1, ece-1=b-1c-1, de=ed >
Subgroups: 576 in 130 conjugacy classes, 46 normal (14 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C2×C4, C2×C4, C23, C32, Dic3, C12, D6, C2×C6, C2×C8, C22×C4, C3⋊S3, C3×C6, C3×C6, C4×S3, C2×Dic3, C2×C12, C22×S3, C22×C8, C3⋊Dic3, C3×C12, C2×C3⋊S3, C62, S3×C2×C4, C32⋊2C8, C4×C3⋊S3, C2×C3⋊Dic3, C6×C12, C22×C3⋊S3, C3⋊S3⋊3C8, C2×C32⋊2C8, C2×C4×C3⋊S3, C2×C3⋊S3⋊3C8
Quotients: C1, C2, C4, C22, C8, C2×C4, C23, C2×C8, C22×C4, C22×C8, C32⋊C4, C2×C32⋊C4, C3⋊S3⋊3C8, C22×C32⋊C4, C2×C3⋊S3⋊3C8
(1 13)(2 14)(3 15)(4 16)(5 9)(6 10)(7 11)(8 12)(17 41)(18 42)(19 43)(20 44)(21 45)(22 46)(23 47)(24 48)(25 33)(26 34)(27 35)(28 36)(29 37)(30 38)(31 39)(32 40)
(1 31 21)(2 32 22)(3 23 25)(4 24 26)(5 27 17)(6 28 18)(7 19 29)(8 20 30)(9 35 41)(10 36 42)(11 43 37)(12 44 38)(13 39 45)(14 40 46)(15 47 33)(16 48 34)
(2 22 32)(4 26 24)(6 18 28)(8 30 20)(10 42 36)(12 38 44)(14 46 40)(16 34 48)
(17 27)(18 28)(19 29)(20 30)(21 31)(22 32)(23 25)(24 26)(33 47)(34 48)(35 41)(36 42)(37 43)(38 44)(39 45)(40 46)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
G:=sub<Sym(48)| (1,13)(2,14)(3,15)(4,16)(5,9)(6,10)(7,11)(8,12)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48)(25,33)(26,34)(27,35)(28,36)(29,37)(30,38)(31,39)(32,40), (1,31,21)(2,32,22)(3,23,25)(4,24,26)(5,27,17)(6,28,18)(7,19,29)(8,20,30)(9,35,41)(10,36,42)(11,43,37)(12,44,38)(13,39,45)(14,40,46)(15,47,33)(16,48,34), (2,22,32)(4,26,24)(6,18,28)(8,30,20)(10,42,36)(12,38,44)(14,46,40)(16,34,48), (17,27)(18,28)(19,29)(20,30)(21,31)(22,32)(23,25)(24,26)(33,47)(34,48)(35,41)(36,42)(37,43)(38,44)(39,45)(40,46), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)>;
G:=Group( (1,13)(2,14)(3,15)(4,16)(5,9)(6,10)(7,11)(8,12)(17,41)(18,42)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48)(25,33)(26,34)(27,35)(28,36)(29,37)(30,38)(31,39)(32,40), (1,31,21)(2,32,22)(3,23,25)(4,24,26)(5,27,17)(6,28,18)(7,19,29)(8,20,30)(9,35,41)(10,36,42)(11,43,37)(12,44,38)(13,39,45)(14,40,46)(15,47,33)(16,48,34), (2,22,32)(4,26,24)(6,18,28)(8,30,20)(10,42,36)(12,38,44)(14,46,40)(16,34,48), (17,27)(18,28)(19,29)(20,30)(21,31)(22,32)(23,25)(24,26)(33,47)(34,48)(35,41)(36,42)(37,43)(38,44)(39,45)(40,46), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48) );
G=PermutationGroup([[(1,13),(2,14),(3,15),(4,16),(5,9),(6,10),(7,11),(8,12),(17,41),(18,42),(19,43),(20,44),(21,45),(22,46),(23,47),(24,48),(25,33),(26,34),(27,35),(28,36),(29,37),(30,38),(31,39),(32,40)], [(1,31,21),(2,32,22),(3,23,25),(4,24,26),(5,27,17),(6,28,18),(7,19,29),(8,20,30),(9,35,41),(10,36,42),(11,43,37),(12,44,38),(13,39,45),(14,40,46),(15,47,33),(16,48,34)], [(2,22,32),(4,26,24),(6,18,28),(8,30,20),(10,42,36),(12,38,44),(14,46,40),(16,34,48)], [(17,27),(18,28),(19,29),(20,30),(21,31),(22,32),(23,25),(24,26),(33,47),(34,48),(35,41),(36,42),(37,43),(38,44),(39,45),(40,46)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)]])
48 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 6A | ··· | 6F | 8A | ··· | 8P | 12A | ··· | 12H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 8 | ··· | 8 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 9 | 9 | 9 | 9 | 4 | 4 | 1 | 1 | 1 | 1 | 9 | 9 | 9 | 9 | 4 | ··· | 4 | 9 | ··· | 9 | 4 | ··· | 4 |
48 irreducible representations
Matrix representation of C2×C3⋊S3⋊3C8 ►in GL5(𝔽73)
72 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 72 |
1 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 |
0 | 1 | 72 | 0 | 0 |
0 | 0 | 0 | 72 | 1 |
0 | 0 | 0 | 72 | 0 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 72 |
0 | 0 | 0 | 1 | 72 |
72 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 |
72 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
0 | 0 | 27 | 0 | 0 |
0 | 27 | 0 | 0 | 0 |
G:=sub<GL(5,GF(73))| [72,0,0,0,0,0,72,0,0,0,0,0,72,0,0,0,0,0,72,0,0,0,0,0,72],[1,0,0,0,0,0,0,1,0,0,0,72,72,0,0,0,0,0,72,72,0,0,0,1,0],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,72,72],[72,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,0],[72,0,0,0,0,0,0,0,0,27,0,0,0,27,0,0,1,0,0,0,0,0,1,0,0] >;
C2×C3⋊S3⋊3C8 in GAP, Magma, Sage, TeX
C_2\times C_3\rtimes S_3\rtimes_3C_8
% in TeX
G:=Group("C2xC3:S3:3C8");
// GroupNames label
G:=SmallGroup(288,929);
// by ID
G=gap.SmallGroup(288,929);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,3,56,100,80,9413,362,12550,1203]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^3=c^3=d^2=e^8=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,d*b*d=b^-1,e*b*e^-1=b*c^-1,d*c*d=c^-1,e*c*e^-1=b^-1*c^-1,d*e=e*d>;
// generators/relations