Extensions 1→N→G→Q→1 with N=C3 and Q=C8.D6

Direct product G=N×Q with N=C3 and Q=C8.D6
dρLabelID
C3×C8.D6484C3xC8.D6288,680

Semidirect products G=N:Q with N=C3 and Q=C8.D6
extensionφ:Q→Aut NdρLabelID
C31(C8.D6) = C24.3D6φ: C8.D6/C24⋊C2C2 ⊆ Aut C3964-C3:1(C8.D6)288,448
C32(C8.D6) = Dic12⋊S3φ: C8.D6/Dic12C2 ⊆ Aut C3484C3:2(C8.D6)288,449
C33(C8.D6) = C24.5D6φ: C8.D6/C3×M4(2)C2 ⊆ Aut C3144C3:3(C8.D6)288,766
C34(C8.D6) = Dic6.29D6φ: C8.D6/C2×Dic6C2 ⊆ Aut C3484C3:4(C8.D6)288,481
C35(C8.D6) = D12.29D6φ: C8.D6/C4○D12C2 ⊆ Aut C3484-C3:5(C8.D6)288,479

Non-split extensions G=N.Q with N=C3 and Q=C8.D6
extensionφ:Q→Aut NdρLabelID
C3.(C8.D6) = C8.D18φ: C8.D6/C3×M4(2)C2 ⊆ Aut C31444-C3.(C8.D6)288,119

׿
×
𝔽