Extensions 1→N→G→Q→1 with N=C4 and Q=D6⋊S3

Direct product G=N×Q with N=C4 and Q=D6⋊S3
dρLabelID
C4×D6⋊S396C4xD6:S3288,549

Semidirect products G=N:Q with N=C4 and Q=D6⋊S3
extensionφ:Q→Aut NdρLabelID
C41(D6⋊S3) = C62.84C23φ: D6⋊S3/C3⋊Dic3C2 ⊆ Aut C496C4:1(D6:S3)288,562
C42(D6⋊S3) = D62D12φ: D6⋊S3/S3×C6C2 ⊆ Aut C496C4:2(D6:S3)288,556

Non-split extensions G=N.Q with N=C4 and Q=D6⋊S3
extensionφ:Q→Aut NdρLabelID
C4.1(D6⋊S3) = C322D16φ: D6⋊S3/C3⋊Dic3C2 ⊆ Aut C4964C4.1(D6:S3)288,193
C4.2(D6⋊S3) = D24.S3φ: D6⋊S3/C3⋊Dic3C2 ⊆ Aut C4964C4.2(D6:S3)288,195
C4.3(D6⋊S3) = C322Q32φ: D6⋊S3/C3⋊Dic3C2 ⊆ Aut C4964C4.3(D6:S3)288,198
C4.4(D6⋊S3) = C2×C322D8φ: D6⋊S3/C3⋊Dic3C2 ⊆ Aut C496C4.4(D6:S3)288,469
C4.5(D6⋊S3) = C2×Dic6⋊S3φ: D6⋊S3/C3⋊Dic3C2 ⊆ Aut C496C4.5(D6:S3)288,474
C4.6(D6⋊S3) = C2×C322Q16φ: D6⋊S3/C3⋊Dic3C2 ⊆ Aut C496C4.6(D6:S3)288,482
C4.7(D6⋊S3) = C62.33C23φ: D6⋊S3/C3⋊Dic3C2 ⊆ Aut C496C4.7(D6:S3)288,511
C4.8(D6⋊S3) = C62.43C23φ: D6⋊S3/C3⋊Dic3C2 ⊆ Aut C496C4.8(D6:S3)288,521
C4.9(D6⋊S3) = C12.D12φ: D6⋊S3/S3×C6C2 ⊆ Aut C4484C4.9(D6:S3)288,206
C4.10(D6⋊S3) = C12.14D12φ: D6⋊S3/S3×C6C2 ⊆ Aut C4484C4.10(D6:S3)288,208
C4.11(D6⋊S3) = C6.16D24φ: D6⋊S3/S3×C6C2 ⊆ Aut C496C4.11(D6:S3)288,211
C4.12(D6⋊S3) = C6.Dic12φ: D6⋊S3/S3×C6C2 ⊆ Aut C496C4.12(D6:S3)288,214
C4.13(D6⋊S3) = D1220D6φ: D6⋊S3/S3×C6C2 ⊆ Aut C4484C4.13(D6:S3)288,471
C4.14(D6⋊S3) = D12.32D6φ: D6⋊S3/S3×C6C2 ⊆ Aut C4484C4.14(D6:S3)288,475
C4.15(D6⋊S3) = D66Dic6φ: D6⋊S3/S3×C6C2 ⊆ Aut C496C4.15(D6:S3)288,504
C4.16(D6⋊S3) = C12.77D12central extension (φ=1)96C4.16(D6:S3)288,204
C4.17(D6⋊S3) = D124Dic3central extension (φ=1)244C4.17(D6:S3)288,216
C4.18(D6⋊S3) = C12.15Dic6central extension (φ=1)96C4.18(D6:S3)288,220
C4.19(D6⋊S3) = C62.5Q8central extension (φ=1)484C4.19(D6:S3)288,226
C4.20(D6⋊S3) = D12.30D6central extension (φ=1)484C4.20(D6:S3)288,470

׿
×
𝔽