Copied to
clipboard

G = C12.77D12order 288 = 25·32

8th non-split extension by C12 of D12 acting via D12/D6=C2

metabelian, supersoluble, monomial

Aliases: C12.77D12, D6⋊(C3⋊C8), (S3×C6)⋊1C8, C33(D6⋊C8), C6.20(S3×C8), C6.31(D6⋊C4), (C2×C12).295D6, (C3×C12).107D4, C324(C22⋊C8), C62.25(C2×C4), (C6×Dic3).4C4, C6.12(C8⋊S3), (C3×C6).5M4(2), C12.94(C3⋊D4), C2.1(D6⋊Dic3), C6.2(C4.Dic3), C4.16(D6⋊S3), C4.26(C3⋊D12), C31(C12.55D4), (C6×C12).200C22, (C2×Dic3).3Dic3, C6.1(C6.D4), C2.2(D6.Dic3), (C22×S3).2Dic3, C22.10(S3×Dic3), (C6×C3⋊C8)⋊1C2, (C2×C3⋊C8)⋊9S3, C6.4(C2×C3⋊C8), C2.4(S3×C3⋊C8), (S3×C2×C4).7S3, (S3×C2×C6).3C4, (C2×C4).128S32, (S3×C2×C12).16C2, (C2×C6).65(C4×S3), (C3×C6).18(C2×C8), (C2×C324C8)⋊14C2, (C2×C6).14(C2×Dic3), (C3×C6).23(C22⋊C4), SmallGroup(288,204)

Series: Derived Chief Lower central Upper central

C1C3×C6 — C12.77D12
C1C3C32C3×C6C3×C12C6×C12S3×C2×C12 — C12.77D12
C32C3×C6 — C12.77D12
C1C2×C4

Generators and relations for C12.77D12
 G = < a,b,c | a12=1, b12=a6, c2=a9, bab-1=cac-1=a5, cbc-1=a3b11 >

Subgroups: 306 in 111 conjugacy classes, 46 normal (42 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, C23, C32, Dic3, C12, C12, D6, D6, C2×C6, C2×C6, C2×C8, C22×C4, C3×S3, C3×C6, C3⋊C8, C24, C4×S3, C2×Dic3, C2×C12, C2×C12, C22×S3, C22×C6, C22⋊C8, C3×Dic3, C3×C12, S3×C6, S3×C6, C62, C2×C3⋊C8, C2×C3⋊C8, C2×C24, S3×C2×C4, C22×C12, C3×C3⋊C8, C324C8, S3×C12, C6×Dic3, C6×C12, S3×C2×C6, D6⋊C8, C12.55D4, C6×C3⋊C8, C2×C324C8, S3×C2×C12, C12.77D12
Quotients: C1, C2, C4, C22, S3, C8, C2×C4, D4, Dic3, D6, C22⋊C4, C2×C8, M4(2), C3⋊C8, C4×S3, D12, C2×Dic3, C3⋊D4, C22⋊C8, S32, S3×C8, C8⋊S3, C2×C3⋊C8, C4.Dic3, D6⋊C4, C6.D4, S3×Dic3, D6⋊S3, C3⋊D12, D6⋊C8, C12.55D4, S3×C3⋊C8, D6.Dic3, D6⋊Dic3, C12.77D12

Smallest permutation representation of C12.77D12
On 96 points
Generators in S96
(1 74 21 94 17 90 13 86 9 82 5 78)(2 91 6 95 10 75 14 79 18 83 22 87)(3 76 23 96 19 92 15 88 11 84 7 80)(4 93 8 73 12 77 16 81 20 85 24 89)(25 67 45 63 41 59 37 55 33 51 29 71)(26 60 30 64 34 68 38 72 42 52 46 56)(27 69 47 65 43 61 39 57 35 53 31 49)(28 62 32 66 36 70 40 50 44 54 48 58)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 51 82 37 13 63 94 25)(2 36 83 62 14 48 95 50)(3 61 84 47 15 49 96 35)(4 46 85 72 16 34 73 60)(5 71 86 33 17 59 74 45)(6 32 87 58 18 44 75 70)(7 57 88 43 19 69 76 31)(8 42 89 68 20 30 77 56)(9 67 90 29 21 55 78 41)(10 28 91 54 22 40 79 66)(11 53 92 39 23 65 80 27)(12 38 93 64 24 26 81 52)

G:=sub<Sym(96)| (1,74,21,94,17,90,13,86,9,82,5,78)(2,91,6,95,10,75,14,79,18,83,22,87)(3,76,23,96,19,92,15,88,11,84,7,80)(4,93,8,73,12,77,16,81,20,85,24,89)(25,67,45,63,41,59,37,55,33,51,29,71)(26,60,30,64,34,68,38,72,42,52,46,56)(27,69,47,65,43,61,39,57,35,53,31,49)(28,62,32,66,36,70,40,50,44,54,48,58), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,51,82,37,13,63,94,25)(2,36,83,62,14,48,95,50)(3,61,84,47,15,49,96,35)(4,46,85,72,16,34,73,60)(5,71,86,33,17,59,74,45)(6,32,87,58,18,44,75,70)(7,57,88,43,19,69,76,31)(8,42,89,68,20,30,77,56)(9,67,90,29,21,55,78,41)(10,28,91,54,22,40,79,66)(11,53,92,39,23,65,80,27)(12,38,93,64,24,26,81,52)>;

G:=Group( (1,74,21,94,17,90,13,86,9,82,5,78)(2,91,6,95,10,75,14,79,18,83,22,87)(3,76,23,96,19,92,15,88,11,84,7,80)(4,93,8,73,12,77,16,81,20,85,24,89)(25,67,45,63,41,59,37,55,33,51,29,71)(26,60,30,64,34,68,38,72,42,52,46,56)(27,69,47,65,43,61,39,57,35,53,31,49)(28,62,32,66,36,70,40,50,44,54,48,58), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,51,82,37,13,63,94,25)(2,36,83,62,14,48,95,50)(3,61,84,47,15,49,96,35)(4,46,85,72,16,34,73,60)(5,71,86,33,17,59,74,45)(6,32,87,58,18,44,75,70)(7,57,88,43,19,69,76,31)(8,42,89,68,20,30,77,56)(9,67,90,29,21,55,78,41)(10,28,91,54,22,40,79,66)(11,53,92,39,23,65,80,27)(12,38,93,64,24,26,81,52) );

G=PermutationGroup([[(1,74,21,94,17,90,13,86,9,82,5,78),(2,91,6,95,10,75,14,79,18,83,22,87),(3,76,23,96,19,92,15,88,11,84,7,80),(4,93,8,73,12,77,16,81,20,85,24,89),(25,67,45,63,41,59,37,55,33,51,29,71),(26,60,30,64,34,68,38,72,42,52,46,56),(27,69,47,65,43,61,39,57,35,53,31,49),(28,62,32,66,36,70,40,50,44,54,48,58)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,51,82,37,13,63,94,25),(2,36,83,62,14,48,95,50),(3,61,84,47,15,49,96,35),(4,46,85,72,16,34,73,60),(5,71,86,33,17,59,74,45),(6,32,87,58,18,44,75,70),(7,57,88,43,19,69,76,31),(8,42,89,68,20,30,77,56),(9,67,90,29,21,55,78,41),(10,28,91,54,22,40,79,66),(11,53,92,39,23,65,80,27),(12,38,93,64,24,26,81,52)]])

60 conjugacy classes

class 1 2A2B2C2D2E3A3B3C4A4B4C4D4E4F6A···6F6G6H6I6J6K6L6M8A8B8C8D8E8F8G8H12A···12H12I12J12K12L12M12N12O12P24A···24H
order1222223334444446···666666668888888812···12121212121212121224···24
size1111662241111662···244466666666181818182···2444466666···6

60 irreducible representations

dim111111122222222222222444444
type+++++++-+-++-+-
imageC1C2C2C2C4C4C8S3S3D4Dic3D6Dic3M4(2)D12C3⋊D4C3⋊C8C4×S3S3×C8C8⋊S3C4.Dic3S32D6⋊S3C3⋊D12S3×Dic3S3×C3⋊C8D6.Dic3
kernelC12.77D12C6×C3⋊C8C2×C324C8S3×C2×C12C6×Dic3S3×C2×C6S3×C6C2×C3⋊C8S3×C2×C4C3×C12C2×Dic3C2×C12C22×S3C3×C6C12C12D6C2×C6C6C6C6C2×C4C4C4C22C2C2
# reps111122811212122642444111122

Matrix representation of C12.77D12 in GL6(𝔽73)

100000
010000
0046000
0004600
0000072
0000172
,
010000
7200000
00512200
0051000
000001
000010
,
30140000
14430000
0005100
0051000
000001
000010

G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,46,0,0,0,0,0,0,46,0,0,0,0,0,0,0,1,0,0,0,0,72,72],[0,72,0,0,0,0,1,0,0,0,0,0,0,0,51,51,0,0,0,0,22,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[30,14,0,0,0,0,14,43,0,0,0,0,0,0,0,51,0,0,0,0,51,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

C12.77D12 in GAP, Magma, Sage, TeX

C_{12}._{77}D_{12}
% in TeX

G:=Group("C12.77D12");
// GroupNames label

G:=SmallGroup(288,204);
// by ID

G=gap.SmallGroup(288,204);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,141,36,100,1356,9414]);
// Polycyclic

G:=Group<a,b,c|a^12=1,b^12=a^6,c^2=a^9,b*a*b^-1=c*a*c^-1=a^5,c*b*c^-1=a^3*b^11>;
// generators/relations

׿
×
𝔽