extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C24)⋊1S3 = C3×D6⋊C8 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 96 | | (C2xC24):1S3 | 288,254 |
(C2×C24)⋊2S3 = C3×C2.D24 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 96 | | (C2xC24):2S3 | 288,255 |
(C2×C24)⋊3S3 = C12.60D12 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 144 | | (C2xC24):3S3 | 288,295 |
(C2×C24)⋊4S3 = C62.84D4 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 144 | | (C2xC24):4S3 | 288,296 |
(C2×C24)⋊5S3 = C2×C32⋊5D8 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 144 | | (C2xC24):5S3 | 288,760 |
(C2×C24)⋊6S3 = C24.78D6 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 144 | | (C2xC24):6S3 | 288,761 |
(C2×C24)⋊7S3 = C2×C24⋊2S3 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 144 | | (C2xC24):7S3 | 288,759 |
(C2×C24)⋊8S3 = C6×D24 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 96 | | (C2xC24):8S3 | 288,674 |
(C2×C24)⋊9S3 = C3×C4○D24 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 48 | 2 | (C2xC24):9S3 | 288,675 |
(C2×C24)⋊10S3 = C2×C8×C3⋊S3 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 144 | | (C2xC24):10S3 | 288,756 |
(C2×C24)⋊11S3 = C2×C24⋊S3 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 144 | | (C2xC24):11S3 | 288,757 |
(C2×C24)⋊12S3 = C24.95D6 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 144 | | (C2xC24):12S3 | 288,758 |
(C2×C24)⋊13S3 = C6×C24⋊C2 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 96 | | (C2xC24):13S3 | 288,673 |
(C2×C24)⋊14S3 = C6×C8⋊S3 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 96 | | (C2xC24):14S3 | 288,671 |
(C2×C24)⋊15S3 = C3×C8○D12 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 48 | 2 | (C2xC24):15S3 | 288,672 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C24).1S3 = Dic9⋊C8 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 288 | | (C2xC24).1S3 | 288,22 |
(C2×C24).2S3 = C36.45D4 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 288 | | (C2xC24).2S3 | 288,24 |
(C2×C24).3S3 = D18⋊C8 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 144 | | (C2xC24).3S3 | 288,27 |
(C2×C24).4S3 = C2.D72 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 144 | | (C2xC24).4S3 | 288,28 |
(C2×C24).5S3 = C3×Dic3⋊C8 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 96 | | (C2xC24).5S3 | 288,248 |
(C2×C24).6S3 = C3×C2.Dic12 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 96 | | (C2xC24).6S3 | 288,250 |
(C2×C24).7S3 = C12.30Dic6 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 288 | | (C2xC24).7S3 | 288,289 |
(C2×C24).8S3 = C6.4Dic12 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 288 | | (C2xC24).8S3 | 288,291 |
(C2×C24).9S3 = C72⋊1C4 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 288 | | (C2xC24).9S3 | 288,26 |
(C2×C24).10S3 = C2×Dic36 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 288 | | (C2xC24).10S3 | 288,109 |
(C2×C24).11S3 = C2×D72 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 144 | | (C2xC24).11S3 | 288,114 |
(C2×C24).12S3 = C24⋊1Dic3 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 288 | | (C2xC24).12S3 | 288,293 |
(C2×C24).13S3 = C2×C32⋊5Q16 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 288 | | (C2xC24).13S3 | 288,762 |
(C2×C24).14S3 = C72.C4 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 144 | 2 | (C2xC24).14S3 | 288,20 |
(C2×C24).15S3 = D72⋊7C2 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 144 | 2 | (C2xC24).15S3 | 288,115 |
(C2×C24).16S3 = C12.59D12 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 144 | | (C2xC24).16S3 | 288,294 |
(C2×C24).17S3 = C8⋊Dic9 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 288 | | (C2xC24).17S3 | 288,25 |
(C2×C24).18S3 = C2×C72⋊C2 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 144 | | (C2xC24).18S3 | 288,113 |
(C2×C24).19S3 = C24⋊2Dic3 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 288 | | (C2xC24).19S3 | 288,292 |
(C2×C24).20S3 = C3×C24⋊1C4 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 96 | | (C2xC24).20S3 | 288,252 |
(C2×C24).21S3 = C6×Dic12 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 96 | | (C2xC24).21S3 | 288,676 |
(C2×C24).22S3 = C3×C24.C4 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 48 | 2 | (C2xC24).22S3 | 288,253 |
(C2×C24).23S3 = C2×C9⋊C16 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 288 | | (C2xC24).23S3 | 288,18 |
(C2×C24).24S3 = C36.C8 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 144 | 2 | (C2xC24).24S3 | 288,19 |
(C2×C24).25S3 = C8×Dic9 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 288 | | (C2xC24).25S3 | 288,21 |
(C2×C24).26S3 = C72⋊C4 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 288 | | (C2xC24).26S3 | 288,23 |
(C2×C24).27S3 = C2×C8×D9 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 144 | | (C2xC24).27S3 | 288,110 |
(C2×C24).28S3 = C2×C8⋊D9 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 144 | | (C2xC24).28S3 | 288,111 |
(C2×C24).29S3 = D36.2C4 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 144 | 2 | (C2xC24).29S3 | 288,112 |
(C2×C24).30S3 = C2×C24.S3 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 288 | | (C2xC24).30S3 | 288,286 |
(C2×C24).31S3 = C24.94D6 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 144 | | (C2xC24).31S3 | 288,287 |
(C2×C24).32S3 = C8×C3⋊Dic3 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 288 | | (C2xC24).32S3 | 288,288 |
(C2×C24).33S3 = C24⋊Dic3 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 288 | | (C2xC24).33S3 | 288,290 |
(C2×C24).34S3 = C3×C8⋊Dic3 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 96 | | (C2xC24).34S3 | 288,251 |
(C2×C24).35S3 = C3×C12.C8 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 48 | 2 | (C2xC24).35S3 | 288,246 |
(C2×C24).36S3 = C3×C24⋊C4 | φ: S3/C3 → C2 ⊆ Aut C2×C24 | 96 | | (C2xC24).36S3 | 288,249 |
(C2×C24).37S3 = C6×C3⋊C16 | central extension (φ=1) | 96 | | (C2xC24).37S3 | 288,245 |
(C2×C24).38S3 = Dic3×C24 | central extension (φ=1) | 96 | | (C2xC24).38S3 | 288,247 |