extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2xC24).1S3 = Dic9:C8 | φ: S3/C3 → C2 ⊆ Aut C2xC24 | 288 | | (C2xC24).1S3 | 288,22 |
(C2xC24).2S3 = C36.45D4 | φ: S3/C3 → C2 ⊆ Aut C2xC24 | 288 | | (C2xC24).2S3 | 288,24 |
(C2xC24).3S3 = D18:C8 | φ: S3/C3 → C2 ⊆ Aut C2xC24 | 144 | | (C2xC24).3S3 | 288,27 |
(C2xC24).4S3 = C2.D72 | φ: S3/C3 → C2 ⊆ Aut C2xC24 | 144 | | (C2xC24).4S3 | 288,28 |
(C2xC24).5S3 = C3xDic3:C8 | φ: S3/C3 → C2 ⊆ Aut C2xC24 | 96 | | (C2xC24).5S3 | 288,248 |
(C2xC24).6S3 = C3xC2.Dic12 | φ: S3/C3 → C2 ⊆ Aut C2xC24 | 96 | | (C2xC24).6S3 | 288,250 |
(C2xC24).7S3 = C12.30Dic6 | φ: S3/C3 → C2 ⊆ Aut C2xC24 | 288 | | (C2xC24).7S3 | 288,289 |
(C2xC24).8S3 = C6.4Dic12 | φ: S3/C3 → C2 ⊆ Aut C2xC24 | 288 | | (C2xC24).8S3 | 288,291 |
(C2xC24).9S3 = C72:1C4 | φ: S3/C3 → C2 ⊆ Aut C2xC24 | 288 | | (C2xC24).9S3 | 288,26 |
(C2xC24).10S3 = C2xDic36 | φ: S3/C3 → C2 ⊆ Aut C2xC24 | 288 | | (C2xC24).10S3 | 288,109 |
(C2xC24).11S3 = C2xD72 | φ: S3/C3 → C2 ⊆ Aut C2xC24 | 144 | | (C2xC24).11S3 | 288,114 |
(C2xC24).12S3 = C24:1Dic3 | φ: S3/C3 → C2 ⊆ Aut C2xC24 | 288 | | (C2xC24).12S3 | 288,293 |
(C2xC24).13S3 = C2xC32:5Q16 | φ: S3/C3 → C2 ⊆ Aut C2xC24 | 288 | | (C2xC24).13S3 | 288,762 |
(C2xC24).14S3 = C72.C4 | φ: S3/C3 → C2 ⊆ Aut C2xC24 | 144 | 2 | (C2xC24).14S3 | 288,20 |
(C2xC24).15S3 = D72:7C2 | φ: S3/C3 → C2 ⊆ Aut C2xC24 | 144 | 2 | (C2xC24).15S3 | 288,115 |
(C2xC24).16S3 = C12.59D12 | φ: S3/C3 → C2 ⊆ Aut C2xC24 | 144 | | (C2xC24).16S3 | 288,294 |
(C2xC24).17S3 = C8:Dic9 | φ: S3/C3 → C2 ⊆ Aut C2xC24 | 288 | | (C2xC24).17S3 | 288,25 |
(C2xC24).18S3 = C2xC72:C2 | φ: S3/C3 → C2 ⊆ Aut C2xC24 | 144 | | (C2xC24).18S3 | 288,113 |
(C2xC24).19S3 = C24:2Dic3 | φ: S3/C3 → C2 ⊆ Aut C2xC24 | 288 | | (C2xC24).19S3 | 288,292 |
(C2xC24).20S3 = C3xC24:1C4 | φ: S3/C3 → C2 ⊆ Aut C2xC24 | 96 | | (C2xC24).20S3 | 288,252 |
(C2xC24).21S3 = C6xDic12 | φ: S3/C3 → C2 ⊆ Aut C2xC24 | 96 | | (C2xC24).21S3 | 288,676 |
(C2xC24).22S3 = C3xC24.C4 | φ: S3/C3 → C2 ⊆ Aut C2xC24 | 48 | 2 | (C2xC24).22S3 | 288,253 |
(C2xC24).23S3 = C2xC9:C16 | φ: S3/C3 → C2 ⊆ Aut C2xC24 | 288 | | (C2xC24).23S3 | 288,18 |
(C2xC24).24S3 = C36.C8 | φ: S3/C3 → C2 ⊆ Aut C2xC24 | 144 | 2 | (C2xC24).24S3 | 288,19 |
(C2xC24).25S3 = C8xDic9 | φ: S3/C3 → C2 ⊆ Aut C2xC24 | 288 | | (C2xC24).25S3 | 288,21 |
(C2xC24).26S3 = C72:C4 | φ: S3/C3 → C2 ⊆ Aut C2xC24 | 288 | | (C2xC24).26S3 | 288,23 |
(C2xC24).27S3 = C2xC8xD9 | φ: S3/C3 → C2 ⊆ Aut C2xC24 | 144 | | (C2xC24).27S3 | 288,110 |
(C2xC24).28S3 = C2xC8:D9 | φ: S3/C3 → C2 ⊆ Aut C2xC24 | 144 | | (C2xC24).28S3 | 288,111 |
(C2xC24).29S3 = D36.2C4 | φ: S3/C3 → C2 ⊆ Aut C2xC24 | 144 | 2 | (C2xC24).29S3 | 288,112 |
(C2xC24).30S3 = C2xC24.S3 | φ: S3/C3 → C2 ⊆ Aut C2xC24 | 288 | | (C2xC24).30S3 | 288,286 |
(C2xC24).31S3 = C24.94D6 | φ: S3/C3 → C2 ⊆ Aut C2xC24 | 144 | | (C2xC24).31S3 | 288,287 |
(C2xC24).32S3 = C8xC3:Dic3 | φ: S3/C3 → C2 ⊆ Aut C2xC24 | 288 | | (C2xC24).32S3 | 288,288 |
(C2xC24).33S3 = C24:Dic3 | φ: S3/C3 → C2 ⊆ Aut C2xC24 | 288 | | (C2xC24).33S3 | 288,290 |
(C2xC24).34S3 = C3xC8:Dic3 | φ: S3/C3 → C2 ⊆ Aut C2xC24 | 96 | | (C2xC24).34S3 | 288,251 |
(C2xC24).35S3 = C3xC12.C8 | φ: S3/C3 → C2 ⊆ Aut C2xC24 | 48 | 2 | (C2xC24).35S3 | 288,246 |
(C2xC24).36S3 = C3xC24:C4 | φ: S3/C3 → C2 ⊆ Aut C2xC24 | 96 | | (C2xC24).36S3 | 288,249 |
(C2xC24).37S3 = C6xC3:C16 | central extension (φ=1) | 96 | | (C2xC24).37S3 | 288,245 |
(C2xC24).38S3 = Dic3xC24 | central extension (φ=1) | 96 | | (C2xC24).38S3 | 288,247 |