Extensions 1→N→G→Q→1 with N=C2xC24 and Q=S3

Direct product G=NxQ with N=C2xC24 and Q=S3
dρLabelID
S3xC2xC2496S3xC2xC24288,670

Semidirect products G=N:Q with N=C2xC24 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C2xC24):1S3 = C3xD6:C8φ: S3/C3C2 ⊆ Aut C2xC2496(C2xC24):1S3288,254
(C2xC24):2S3 = C3xC2.D24φ: S3/C3C2 ⊆ Aut C2xC2496(C2xC24):2S3288,255
(C2xC24):3S3 = C12.60D12φ: S3/C3C2 ⊆ Aut C2xC24144(C2xC24):3S3288,295
(C2xC24):4S3 = C62.84D4φ: S3/C3C2 ⊆ Aut C2xC24144(C2xC24):4S3288,296
(C2xC24):5S3 = C2xC32:5D8φ: S3/C3C2 ⊆ Aut C2xC24144(C2xC24):5S3288,760
(C2xC24):6S3 = C24.78D6φ: S3/C3C2 ⊆ Aut C2xC24144(C2xC24):6S3288,761
(C2xC24):7S3 = C2xC24:2S3φ: S3/C3C2 ⊆ Aut C2xC24144(C2xC24):7S3288,759
(C2xC24):8S3 = C6xD24φ: S3/C3C2 ⊆ Aut C2xC2496(C2xC24):8S3288,674
(C2xC24):9S3 = C3xC4oD24φ: S3/C3C2 ⊆ Aut C2xC24482(C2xC24):9S3288,675
(C2xC24):10S3 = C2xC8xC3:S3φ: S3/C3C2 ⊆ Aut C2xC24144(C2xC24):10S3288,756
(C2xC24):11S3 = C2xC24:S3φ: S3/C3C2 ⊆ Aut C2xC24144(C2xC24):11S3288,757
(C2xC24):12S3 = C24.95D6φ: S3/C3C2 ⊆ Aut C2xC24144(C2xC24):12S3288,758
(C2xC24):13S3 = C6xC24:C2φ: S3/C3C2 ⊆ Aut C2xC2496(C2xC24):13S3288,673
(C2xC24):14S3 = C6xC8:S3φ: S3/C3C2 ⊆ Aut C2xC2496(C2xC24):14S3288,671
(C2xC24):15S3 = C3xC8oD12φ: S3/C3C2 ⊆ Aut C2xC24482(C2xC24):15S3288,672

Non-split extensions G=N.Q with N=C2xC24 and Q=S3
extensionφ:Q→Aut NdρLabelID
(C2xC24).1S3 = Dic9:C8φ: S3/C3C2 ⊆ Aut C2xC24288(C2xC24).1S3288,22
(C2xC24).2S3 = C36.45D4φ: S3/C3C2 ⊆ Aut C2xC24288(C2xC24).2S3288,24
(C2xC24).3S3 = D18:C8φ: S3/C3C2 ⊆ Aut C2xC24144(C2xC24).3S3288,27
(C2xC24).4S3 = C2.D72φ: S3/C3C2 ⊆ Aut C2xC24144(C2xC24).4S3288,28
(C2xC24).5S3 = C3xDic3:C8φ: S3/C3C2 ⊆ Aut C2xC2496(C2xC24).5S3288,248
(C2xC24).6S3 = C3xC2.Dic12φ: S3/C3C2 ⊆ Aut C2xC2496(C2xC24).6S3288,250
(C2xC24).7S3 = C12.30Dic6φ: S3/C3C2 ⊆ Aut C2xC24288(C2xC24).7S3288,289
(C2xC24).8S3 = C6.4Dic12φ: S3/C3C2 ⊆ Aut C2xC24288(C2xC24).8S3288,291
(C2xC24).9S3 = C72:1C4φ: S3/C3C2 ⊆ Aut C2xC24288(C2xC24).9S3288,26
(C2xC24).10S3 = C2xDic36φ: S3/C3C2 ⊆ Aut C2xC24288(C2xC24).10S3288,109
(C2xC24).11S3 = C2xD72φ: S3/C3C2 ⊆ Aut C2xC24144(C2xC24).11S3288,114
(C2xC24).12S3 = C24:1Dic3φ: S3/C3C2 ⊆ Aut C2xC24288(C2xC24).12S3288,293
(C2xC24).13S3 = C2xC32:5Q16φ: S3/C3C2 ⊆ Aut C2xC24288(C2xC24).13S3288,762
(C2xC24).14S3 = C72.C4φ: S3/C3C2 ⊆ Aut C2xC241442(C2xC24).14S3288,20
(C2xC24).15S3 = D72:7C2φ: S3/C3C2 ⊆ Aut C2xC241442(C2xC24).15S3288,115
(C2xC24).16S3 = C12.59D12φ: S3/C3C2 ⊆ Aut C2xC24144(C2xC24).16S3288,294
(C2xC24).17S3 = C8:Dic9φ: S3/C3C2 ⊆ Aut C2xC24288(C2xC24).17S3288,25
(C2xC24).18S3 = C2xC72:C2φ: S3/C3C2 ⊆ Aut C2xC24144(C2xC24).18S3288,113
(C2xC24).19S3 = C24:2Dic3φ: S3/C3C2 ⊆ Aut C2xC24288(C2xC24).19S3288,292
(C2xC24).20S3 = C3xC24:1C4φ: S3/C3C2 ⊆ Aut C2xC2496(C2xC24).20S3288,252
(C2xC24).21S3 = C6xDic12φ: S3/C3C2 ⊆ Aut C2xC2496(C2xC24).21S3288,676
(C2xC24).22S3 = C3xC24.C4φ: S3/C3C2 ⊆ Aut C2xC24482(C2xC24).22S3288,253
(C2xC24).23S3 = C2xC9:C16φ: S3/C3C2 ⊆ Aut C2xC24288(C2xC24).23S3288,18
(C2xC24).24S3 = C36.C8φ: S3/C3C2 ⊆ Aut C2xC241442(C2xC24).24S3288,19
(C2xC24).25S3 = C8xDic9φ: S3/C3C2 ⊆ Aut C2xC24288(C2xC24).25S3288,21
(C2xC24).26S3 = C72:C4φ: S3/C3C2 ⊆ Aut C2xC24288(C2xC24).26S3288,23
(C2xC24).27S3 = C2xC8xD9φ: S3/C3C2 ⊆ Aut C2xC24144(C2xC24).27S3288,110
(C2xC24).28S3 = C2xC8:D9φ: S3/C3C2 ⊆ Aut C2xC24144(C2xC24).28S3288,111
(C2xC24).29S3 = D36.2C4φ: S3/C3C2 ⊆ Aut C2xC241442(C2xC24).29S3288,112
(C2xC24).30S3 = C2xC24.S3φ: S3/C3C2 ⊆ Aut C2xC24288(C2xC24).30S3288,286
(C2xC24).31S3 = C24.94D6φ: S3/C3C2 ⊆ Aut C2xC24144(C2xC24).31S3288,287
(C2xC24).32S3 = C8xC3:Dic3φ: S3/C3C2 ⊆ Aut C2xC24288(C2xC24).32S3288,288
(C2xC24).33S3 = C24:Dic3φ: S3/C3C2 ⊆ Aut C2xC24288(C2xC24).33S3288,290
(C2xC24).34S3 = C3xC8:Dic3φ: S3/C3C2 ⊆ Aut C2xC2496(C2xC24).34S3288,251
(C2xC24).35S3 = C3xC12.C8φ: S3/C3C2 ⊆ Aut C2xC24482(C2xC24).35S3288,246
(C2xC24).36S3 = C3xC24:C4φ: S3/C3C2 ⊆ Aut C2xC2496(C2xC24).36S3288,249
(C2xC24).37S3 = C6xC3:C16central extension (φ=1)96(C2xC24).37S3288,245
(C2xC24).38S3 = Dic3xC24central extension (φ=1)96(C2xC24).38S3288,247

׿
x
:
Z
F
o
wr
Q
<