Copied to
clipboard

G = C2.D72order 288 = 25·32

2nd central extension by C2 of D72

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D362C4, C2.2D72, C18.5D8, C6.5D24, C36.46D4, C18.3SD16, C22.10D36, (C2×C8)⋊2D9, (C2×C72)⋊2C2, C4.8(C4×D9), (C2×C24).4S3, C4⋊Dic91C2, C92(D4⋊C4), C12.56(C4×S3), C36.18(C2×C4), (C2×D36).1C2, (C2×C18).15D4, (C2×C4).76D18, (C2×C6).23D12, C3.(C2.D24), C6.3(C24⋊C2), C2.8(D18⋊C4), C6.14(D6⋊C4), (C2×C12).365D6, C2.3(C72⋊C2), C4.20(C9⋊D4), C18.7(C22⋊C4), (C2×C36).84C22, C12.107(C3⋊D4), SmallGroup(288,28)

Series: Derived Chief Lower central Upper central

C1C36 — C2.D72
C1C3C9C18C36C2×C36C2×D36 — C2.D72
C9C18C36 — C2.D72
C1C22C2×C4C2×C8

Generators and relations for C2.D72
 G = < a,b,c | a2=b72=1, c2=a, ab=ba, ac=ca, cbc-1=ab-1 >

Subgroups: 488 in 75 conjugacy classes, 32 normal (30 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C8, C2×C4, C2×C4, D4, C23, C9, Dic3, C12, D6, C2×C6, C4⋊C4, C2×C8, C2×D4, D9, C18, C24, D12, C2×Dic3, C2×C12, C22×S3, D4⋊C4, Dic9, C36, D18, C2×C18, C4⋊Dic3, C2×C24, C2×D12, C72, D36, D36, C2×Dic9, C2×C36, C22×D9, C2.D24, C4⋊Dic9, C2×C72, C2×D36, C2.D72
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, D6, C22⋊C4, D8, SD16, D9, C4×S3, D12, C3⋊D4, D4⋊C4, D18, C24⋊C2, D24, D6⋊C4, C4×D9, D36, C9⋊D4, C2.D24, C72⋊C2, D72, D18⋊C4, C2.D72

Smallest permutation representation of C2.D72
On 144 points
Generators in S144
(1 96)(2 97)(3 98)(4 99)(5 100)(6 101)(7 102)(8 103)(9 104)(10 105)(11 106)(12 107)(13 108)(14 109)(15 110)(16 111)(17 112)(18 113)(19 114)(20 115)(21 116)(22 117)(23 118)(24 119)(25 120)(26 121)(27 122)(28 123)(29 124)(30 125)(31 126)(32 127)(33 128)(34 129)(35 130)(36 131)(37 132)(38 133)(39 134)(40 135)(41 136)(42 137)(43 138)(44 139)(45 140)(46 141)(47 142)(48 143)(49 144)(50 73)(51 74)(52 75)(53 76)(54 77)(55 78)(56 79)(57 80)(58 81)(59 82)(60 83)(61 84)(62 85)(63 86)(64 87)(65 88)(66 89)(67 90)(68 91)(69 92)(70 93)(71 94)(72 95)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)
(1 95 96 72)(2 71 97 94)(3 93 98 70)(4 69 99 92)(5 91 100 68)(6 67 101 90)(7 89 102 66)(8 65 103 88)(9 87 104 64)(10 63 105 86)(11 85 106 62)(12 61 107 84)(13 83 108 60)(14 59 109 82)(15 81 110 58)(16 57 111 80)(17 79 112 56)(18 55 113 78)(19 77 114 54)(20 53 115 76)(21 75 116 52)(22 51 117 74)(23 73 118 50)(24 49 119 144)(25 143 120 48)(26 47 121 142)(27 141 122 46)(28 45 123 140)(29 139 124 44)(30 43 125 138)(31 137 126 42)(32 41 127 136)(33 135 128 40)(34 39 129 134)(35 133 130 38)(36 37 131 132)

G:=sub<Sym(144)| (1,96)(2,97)(3,98)(4,99)(5,100)(6,101)(7,102)(8,103)(9,104)(10,105)(11,106)(12,107)(13,108)(14,109)(15,110)(16,111)(17,112)(18,113)(19,114)(20,115)(21,116)(22,117)(23,118)(24,119)(25,120)(26,121)(27,122)(28,123)(29,124)(30,125)(31,126)(32,127)(33,128)(34,129)(35,130)(36,131)(37,132)(38,133)(39,134)(40,135)(41,136)(42,137)(43,138)(44,139)(45,140)(46,141)(47,142)(48,143)(49,144)(50,73)(51,74)(52,75)(53,76)(54,77)(55,78)(56,79)(57,80)(58,81)(59,82)(60,83)(61,84)(62,85)(63,86)(64,87)(65,88)(66,89)(67,90)(68,91)(69,92)(70,93)(71,94)(72,95), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,95,96,72)(2,71,97,94)(3,93,98,70)(4,69,99,92)(5,91,100,68)(6,67,101,90)(7,89,102,66)(8,65,103,88)(9,87,104,64)(10,63,105,86)(11,85,106,62)(12,61,107,84)(13,83,108,60)(14,59,109,82)(15,81,110,58)(16,57,111,80)(17,79,112,56)(18,55,113,78)(19,77,114,54)(20,53,115,76)(21,75,116,52)(22,51,117,74)(23,73,118,50)(24,49,119,144)(25,143,120,48)(26,47,121,142)(27,141,122,46)(28,45,123,140)(29,139,124,44)(30,43,125,138)(31,137,126,42)(32,41,127,136)(33,135,128,40)(34,39,129,134)(35,133,130,38)(36,37,131,132)>;

G:=Group( (1,96)(2,97)(3,98)(4,99)(5,100)(6,101)(7,102)(8,103)(9,104)(10,105)(11,106)(12,107)(13,108)(14,109)(15,110)(16,111)(17,112)(18,113)(19,114)(20,115)(21,116)(22,117)(23,118)(24,119)(25,120)(26,121)(27,122)(28,123)(29,124)(30,125)(31,126)(32,127)(33,128)(34,129)(35,130)(36,131)(37,132)(38,133)(39,134)(40,135)(41,136)(42,137)(43,138)(44,139)(45,140)(46,141)(47,142)(48,143)(49,144)(50,73)(51,74)(52,75)(53,76)(54,77)(55,78)(56,79)(57,80)(58,81)(59,82)(60,83)(61,84)(62,85)(63,86)(64,87)(65,88)(66,89)(67,90)(68,91)(69,92)(70,93)(71,94)(72,95), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144), (1,95,96,72)(2,71,97,94)(3,93,98,70)(4,69,99,92)(5,91,100,68)(6,67,101,90)(7,89,102,66)(8,65,103,88)(9,87,104,64)(10,63,105,86)(11,85,106,62)(12,61,107,84)(13,83,108,60)(14,59,109,82)(15,81,110,58)(16,57,111,80)(17,79,112,56)(18,55,113,78)(19,77,114,54)(20,53,115,76)(21,75,116,52)(22,51,117,74)(23,73,118,50)(24,49,119,144)(25,143,120,48)(26,47,121,142)(27,141,122,46)(28,45,123,140)(29,139,124,44)(30,43,125,138)(31,137,126,42)(32,41,127,136)(33,135,128,40)(34,39,129,134)(35,133,130,38)(36,37,131,132) );

G=PermutationGroup([[(1,96),(2,97),(3,98),(4,99),(5,100),(6,101),(7,102),(8,103),(9,104),(10,105),(11,106),(12,107),(13,108),(14,109),(15,110),(16,111),(17,112),(18,113),(19,114),(20,115),(21,116),(22,117),(23,118),(24,119),(25,120),(26,121),(27,122),(28,123),(29,124),(30,125),(31,126),(32,127),(33,128),(34,129),(35,130),(36,131),(37,132),(38,133),(39,134),(40,135),(41,136),(42,137),(43,138),(44,139),(45,140),(46,141),(47,142),(48,143),(49,144),(50,73),(51,74),(52,75),(53,76),(54,77),(55,78),(56,79),(57,80),(58,81),(59,82),(60,83),(61,84),(62,85),(63,86),(64,87),(65,88),(66,89),(67,90),(68,91),(69,92),(70,93),(71,94),(72,95)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)], [(1,95,96,72),(2,71,97,94),(3,93,98,70),(4,69,99,92),(5,91,100,68),(6,67,101,90),(7,89,102,66),(8,65,103,88),(9,87,104,64),(10,63,105,86),(11,85,106,62),(12,61,107,84),(13,83,108,60),(14,59,109,82),(15,81,110,58),(16,57,111,80),(17,79,112,56),(18,55,113,78),(19,77,114,54),(20,53,115,76),(21,75,116,52),(22,51,117,74),(23,73,118,50),(24,49,119,144),(25,143,120,48),(26,47,121,142),(27,141,122,46),(28,45,123,140),(29,139,124,44),(30,43,125,138),(31,137,126,42),(32,41,127,136),(33,135,128,40),(34,39,129,134),(35,133,130,38),(36,37,131,132)]])

78 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D6A6B6C8A8B8C8D9A9B9C12A12B12C12D18A···18I24A···24H36A···36L72A···72X
order1222223444466688889991212121218···1824···2436···3672···72
size111136362223636222222222222222···22···22···22···2

78 irreducible representations

dim11111222222222222222222
type+++++++++++++++
imageC1C2C2C2C4S3D4D4D6D8SD16D9C4×S3C3⋊D4D12D18C24⋊C2D24C4×D9C9⋊D4D36C72⋊C2D72
kernelC2.D72C4⋊Dic9C2×C72C2×D36D36C2×C24C36C2×C18C2×C12C18C18C2×C8C12C12C2×C6C2×C4C6C6C4C4C22C2C2
# reps1111411112232223446661212

Matrix representation of C2.D72 in GL3(𝔽73) generated by

7200
010
001
,
2700
01171
0213
,
4600
01171
06062
G:=sub<GL(3,GF(73))| [72,0,0,0,1,0,0,0,1],[27,0,0,0,11,2,0,71,13],[46,0,0,0,11,60,0,71,62] >;

C2.D72 in GAP, Magma, Sage, TeX

C_2.D_{72}
% in TeX

G:=Group("C2.D72");
// GroupNames label

G:=SmallGroup(288,28);
// by ID

G=gap.SmallGroup(288,28);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,85,92,422,100,6725,292,9414]);
// Polycyclic

G:=Group<a,b,c|a^2=b^72=1,c^2=a,a*b=b*a,a*c=c*a,c*b*c^-1=a*b^-1>;
// generators/relations

׿
×
𝔽