Extensions 1→N→G→Q→1 with N=C3×SD16 and Q=C6

Direct product G=N×Q with N=C3×SD16 and Q=C6
dρLabelID
SD16×C3×C6144SD16xC3xC6288,830

Semidirect products G=N:Q with N=C3×SD16 and Q=C6
extensionφ:Q→Out NdρLabelID
(C3×SD16)⋊1C6 = C3×Q83D6φ: C6/C3C2 ⊆ Out C3×SD16484(C3xSD16):1C6288,685
(C3×SD16)⋊2C6 = C3×D4.D6φ: C6/C3C2 ⊆ Out C3×SD16484(C3xSD16):2C6288,686
(C3×SD16)⋊3C6 = C3×S3×SD16φ: C6/C3C2 ⊆ Out C3×SD16484(C3xSD16):3C6288,684
(C3×SD16)⋊4C6 = C3×Q8.7D6φ: C6/C3C2 ⊆ Out C3×SD16484(C3xSD16):4C6288,687
(C3×SD16)⋊5C6 = C32×C8⋊C22φ: C6/C3C2 ⊆ Out C3×SD1672(C3xSD16):5C6288,833
(C3×SD16)⋊6C6 = C32×C8.C22φ: C6/C3C2 ⊆ Out C3×SD16144(C3xSD16):6C6288,834
(C3×SD16)⋊7C6 = C32×C4○D8φ: trivial image144(C3xSD16):7C6288,832

Non-split extensions G=N.Q with N=C3×SD16 and Q=C6
extensionφ:Q→Out NdρLabelID
(C3×SD16).1C6 = C9×C8⋊C22φ: C6/C3C2 ⊆ Out C3×SD16724(C3xSD16).1C6288,186
(C3×SD16).2C6 = C9×C8.C22φ: C6/C3C2 ⊆ Out C3×SD161444(C3xSD16).2C6288,187
(C3×SD16).3C6 = SD16×C18φ: trivial image144(C3xSD16).3C6288,183
(C3×SD16).4C6 = C9×C4○D8φ: trivial image1442(C3xSD16).4C6288,185

׿
×
𝔽