Extensions 1→N→G→Q→1 with N=C4 and Q=C6xDic3

Direct product G=NxQ with N=C4 and Q=C6xDic3
dρLabelID
Dic3xC2xC1296Dic3xC2xC12288,693

Semidirect products G=N:Q with N=C4 and Q=C6xDic3
extensionφ:Q→Aut NdρLabelID
C4:1(C6xDic3) = C3xD4xDic3φ: C6xDic3/C3xDic3C2 ⊆ Aut C448C4:1(C6xDic3)288,705
C4:2(C6xDic3) = C6xC4:Dic3φ: C6xDic3/C62C2 ⊆ Aut C496C4:2(C6xDic3)288,696

Non-split extensions G=N.Q with N=C4 and Q=C6xDic3
extensionφ:Q→Aut NdρLabelID
C4.1(C6xDic3) = C3xD4:Dic3φ: C6xDic3/C3xDic3C2 ⊆ Aut C448C4.1(C6xDic3)288,266
C4.2(C6xDic3) = C3xQ8:2Dic3φ: C6xDic3/C3xDic3C2 ⊆ Aut C496C4.2(C6xDic3)288,269
C4.3(C6xDic3) = C3xQ8:3Dic3φ: C6xDic3/C3xDic3C2 ⊆ Aut C4484C4.3(C6xDic3)288,271
C4.4(C6xDic3) = C3xQ8xDic3φ: C6xDic3/C3xDic3C2 ⊆ Aut C496C4.4(C6xDic3)288,716
C4.5(C6xDic3) = C3xD4.Dic3φ: C6xDic3/C3xDic3C2 ⊆ Aut C4484C4.5(C6xDic3)288,719
C4.6(C6xDic3) = C3xC8:Dic3φ: C6xDic3/C62C2 ⊆ Aut C496C4.6(C6xDic3)288,251
C4.7(C6xDic3) = C3xC24:1C4φ: C6xDic3/C62C2 ⊆ Aut C496C4.7(C6xDic3)288,252
C4.8(C6xDic3) = C3xC24.C4φ: C6xDic3/C62C2 ⊆ Aut C4482C4.8(C6xDic3)288,253
C4.9(C6xDic3) = C6xC3:C16central extension (φ=1)96C4.9(C6xDic3)288,245
C4.10(C6xDic3) = C3xC12.C8central extension (φ=1)482C4.10(C6xDic3)288,246
C4.11(C6xDic3) = Dic3xC24central extension (φ=1)96C4.11(C6xDic3)288,247
C4.12(C6xDic3) = C3xC24:C4central extension (φ=1)96C4.12(C6xDic3)288,249
C4.13(C6xDic3) = C2xC6xC3:C8central extension (φ=1)96C4.13(C6xDic3)288,691
C4.14(C6xDic3) = C6xC4.Dic3central extension (φ=1)48C4.14(C6xDic3)288,692
C4.15(C6xDic3) = C3xC23.26D6central extension (φ=1)48C4.15(C6xDic3)288,697

׿
x
:
Z
F
o
wr
Q
<