Copied to
clipboard

## G = C3×Q8×Dic3order 288 = 25·32

### Direct product of C3, Q8 and Dic3

Series: Derived Chief Lower central Upper central

 Derived series C1 — C6 — C3×Q8×Dic3
 Chief series C1 — C3 — C6 — C2×C6 — C62 — C6×Dic3 — Dic3×C12 — C3×Q8×Dic3
 Lower central C3 — C6 — C3×Q8×Dic3
 Upper central C1 — C2×C6 — C6×Q8

Generators and relations for C3×Q8×Dic3
G = < a,b,c,d,e | a3=b4=d6=1, c2=b2, e2=d3, ab=ba, ac=ca, ad=da, ae=ea, cbc-1=b-1, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >

Subgroups: 266 in 159 conjugacy classes, 102 normal (28 characteristic)
C1, C2 [×3], C3 [×2], C3, C4 [×6], C4 [×5], C22, C6 [×6], C6 [×3], C2×C4 [×3], C2×C4 [×4], Q8 [×4], C32, Dic3 [×2], Dic3 [×3], C12 [×12], C12 [×11], C2×C6 [×2], C2×C6, C42 [×3], C4⋊C4 [×3], C2×Q8, C3×C6 [×3], C2×Dic3, C2×Dic3 [×3], C2×C12 [×6], C2×C12 [×7], C3×Q8 [×8], C3×Q8 [×4], C4×Q8, C3×Dic3 [×2], C3×Dic3 [×3], C3×C12 [×6], C62, C4×Dic3 [×3], C4⋊Dic3 [×3], C4×C12 [×3], C3×C4⋊C4 [×3], C6×Q8 [×2], C6×Q8, C6×Dic3, C6×Dic3 [×3], C6×C12 [×3], Q8×C32 [×4], Q8×Dic3, Q8×C12, Dic3×C12 [×3], C3×C4⋊Dic3 [×3], Q8×C3×C6, C3×Q8×Dic3
Quotients: C1, C2 [×7], C3, C4 [×4], C22 [×7], S3, C6 [×7], C2×C4 [×6], Q8 [×2], C23, Dic3 [×4], C12 [×4], D6 [×3], C2×C6 [×7], C22×C4, C2×Q8, C4○D4, C3×S3, C2×Dic3 [×6], C2×C12 [×6], C3×Q8 [×2], C22×S3, C22×C6, C4×Q8, C3×Dic3 [×4], S3×C6 [×3], S3×Q8, Q83S3, C22×Dic3, C22×C12, C6×Q8, C3×C4○D4, C6×Dic3 [×6], S3×C2×C6, Q8×Dic3, Q8×C12, C3×S3×Q8, C3×Q83S3, Dic3×C2×C6, C3×Q8×Dic3

Smallest permutation representation of C3×Q8×Dic3
On 96 points
Generators in S96
(1 3 5)(2 4 6)(7 11 9)(8 12 10)(13 15 17)(14 16 18)(19 21 23)(20 22 24)(25 27 29)(26 28 30)(31 33 35)(32 34 36)(37 39 41)(38 40 42)(43 45 47)(44 46 48)(49 51 53)(50 52 54)(55 59 57)(56 60 58)(61 65 63)(62 66 64)(67 71 69)(68 72 70)(73 77 75)(74 78 76)(79 83 81)(80 84 82)(85 89 87)(86 90 88)(91 95 93)(92 96 94)
(1 25 16 23)(2 26 17 24)(3 27 18 19)(4 28 13 20)(5 29 14 21)(6 30 15 22)(7 82 91 89)(8 83 92 90)(9 84 93 85)(10 79 94 86)(11 80 95 87)(12 81 96 88)(31 46 39 53)(32 47 40 54)(33 48 41 49)(34 43 42 50)(35 44 37 51)(36 45 38 52)(55 77 62 70)(56 78 63 71)(57 73 64 72)(58 74 65 67)(59 75 66 68)(60 76 61 69)
(1 37 16 35)(2 38 17 36)(3 39 18 31)(4 40 13 32)(5 41 14 33)(6 42 15 34)(7 77 91 70)(8 78 92 71)(9 73 93 72)(10 74 94 67)(11 75 95 68)(12 76 96 69)(19 53 27 46)(20 54 28 47)(21 49 29 48)(22 50 30 43)(23 51 25 44)(24 52 26 45)(55 89 62 82)(56 90 63 83)(57 85 64 84)(58 86 65 79)(59 87 66 80)(60 88 61 81)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)
(1 55 4 58)(2 60 5 57)(3 59 6 56)(7 54 10 51)(8 53 11 50)(9 52 12 49)(13 65 16 62)(14 64 17 61)(15 63 18 66)(19 68 22 71)(20 67 23 70)(21 72 24 69)(25 77 28 74)(26 76 29 73)(27 75 30 78)(31 80 34 83)(32 79 35 82)(33 84 36 81)(37 89 40 86)(38 88 41 85)(39 87 42 90)(43 92 46 95)(44 91 47 94)(45 96 48 93)

G:=sub<Sym(96)| (1,3,5)(2,4,6)(7,11,9)(8,12,10)(13,15,17)(14,16,18)(19,21,23)(20,22,24)(25,27,29)(26,28,30)(31,33,35)(32,34,36)(37,39,41)(38,40,42)(43,45,47)(44,46,48)(49,51,53)(50,52,54)(55,59,57)(56,60,58)(61,65,63)(62,66,64)(67,71,69)(68,72,70)(73,77,75)(74,78,76)(79,83,81)(80,84,82)(85,89,87)(86,90,88)(91,95,93)(92,96,94), (1,25,16,23)(2,26,17,24)(3,27,18,19)(4,28,13,20)(5,29,14,21)(6,30,15,22)(7,82,91,89)(8,83,92,90)(9,84,93,85)(10,79,94,86)(11,80,95,87)(12,81,96,88)(31,46,39,53)(32,47,40,54)(33,48,41,49)(34,43,42,50)(35,44,37,51)(36,45,38,52)(55,77,62,70)(56,78,63,71)(57,73,64,72)(58,74,65,67)(59,75,66,68)(60,76,61,69), (1,37,16,35)(2,38,17,36)(3,39,18,31)(4,40,13,32)(5,41,14,33)(6,42,15,34)(7,77,91,70)(8,78,92,71)(9,73,93,72)(10,74,94,67)(11,75,95,68)(12,76,96,69)(19,53,27,46)(20,54,28,47)(21,49,29,48)(22,50,30,43)(23,51,25,44)(24,52,26,45)(55,89,62,82)(56,90,63,83)(57,85,64,84)(58,86,65,79)(59,87,66,80)(60,88,61,81), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,55,4,58)(2,60,5,57)(3,59,6,56)(7,54,10,51)(8,53,11,50)(9,52,12,49)(13,65,16,62)(14,64,17,61)(15,63,18,66)(19,68,22,71)(20,67,23,70)(21,72,24,69)(25,77,28,74)(26,76,29,73)(27,75,30,78)(31,80,34,83)(32,79,35,82)(33,84,36,81)(37,89,40,86)(38,88,41,85)(39,87,42,90)(43,92,46,95)(44,91,47,94)(45,96,48,93)>;

G:=Group( (1,3,5)(2,4,6)(7,11,9)(8,12,10)(13,15,17)(14,16,18)(19,21,23)(20,22,24)(25,27,29)(26,28,30)(31,33,35)(32,34,36)(37,39,41)(38,40,42)(43,45,47)(44,46,48)(49,51,53)(50,52,54)(55,59,57)(56,60,58)(61,65,63)(62,66,64)(67,71,69)(68,72,70)(73,77,75)(74,78,76)(79,83,81)(80,84,82)(85,89,87)(86,90,88)(91,95,93)(92,96,94), (1,25,16,23)(2,26,17,24)(3,27,18,19)(4,28,13,20)(5,29,14,21)(6,30,15,22)(7,82,91,89)(8,83,92,90)(9,84,93,85)(10,79,94,86)(11,80,95,87)(12,81,96,88)(31,46,39,53)(32,47,40,54)(33,48,41,49)(34,43,42,50)(35,44,37,51)(36,45,38,52)(55,77,62,70)(56,78,63,71)(57,73,64,72)(58,74,65,67)(59,75,66,68)(60,76,61,69), (1,37,16,35)(2,38,17,36)(3,39,18,31)(4,40,13,32)(5,41,14,33)(6,42,15,34)(7,77,91,70)(8,78,92,71)(9,73,93,72)(10,74,94,67)(11,75,95,68)(12,76,96,69)(19,53,27,46)(20,54,28,47)(21,49,29,48)(22,50,30,43)(23,51,25,44)(24,52,26,45)(55,89,62,82)(56,90,63,83)(57,85,64,84)(58,86,65,79)(59,87,66,80)(60,88,61,81), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,55,4,58)(2,60,5,57)(3,59,6,56)(7,54,10,51)(8,53,11,50)(9,52,12,49)(13,65,16,62)(14,64,17,61)(15,63,18,66)(19,68,22,71)(20,67,23,70)(21,72,24,69)(25,77,28,74)(26,76,29,73)(27,75,30,78)(31,80,34,83)(32,79,35,82)(33,84,36,81)(37,89,40,86)(38,88,41,85)(39,87,42,90)(43,92,46,95)(44,91,47,94)(45,96,48,93) );

G=PermutationGroup([(1,3,5),(2,4,6),(7,11,9),(8,12,10),(13,15,17),(14,16,18),(19,21,23),(20,22,24),(25,27,29),(26,28,30),(31,33,35),(32,34,36),(37,39,41),(38,40,42),(43,45,47),(44,46,48),(49,51,53),(50,52,54),(55,59,57),(56,60,58),(61,65,63),(62,66,64),(67,71,69),(68,72,70),(73,77,75),(74,78,76),(79,83,81),(80,84,82),(85,89,87),(86,90,88),(91,95,93),(92,96,94)], [(1,25,16,23),(2,26,17,24),(3,27,18,19),(4,28,13,20),(5,29,14,21),(6,30,15,22),(7,82,91,89),(8,83,92,90),(9,84,93,85),(10,79,94,86),(11,80,95,87),(12,81,96,88),(31,46,39,53),(32,47,40,54),(33,48,41,49),(34,43,42,50),(35,44,37,51),(36,45,38,52),(55,77,62,70),(56,78,63,71),(57,73,64,72),(58,74,65,67),(59,75,66,68),(60,76,61,69)], [(1,37,16,35),(2,38,17,36),(3,39,18,31),(4,40,13,32),(5,41,14,33),(6,42,15,34),(7,77,91,70),(8,78,92,71),(9,73,93,72),(10,74,94,67),(11,75,95,68),(12,76,96,69),(19,53,27,46),(20,54,28,47),(21,49,29,48),(22,50,30,43),(23,51,25,44),(24,52,26,45),(55,89,62,82),(56,90,63,83),(57,85,64,84),(58,86,65,79),(59,87,66,80),(60,88,61,81)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96)], [(1,55,4,58),(2,60,5,57),(3,59,6,56),(7,54,10,51),(8,53,11,50),(9,52,12,49),(13,65,16,62),(14,64,17,61),(15,63,18,66),(19,68,22,71),(20,67,23,70),(21,72,24,69),(25,77,28,74),(26,76,29,73),(27,75,30,78),(31,80,34,83),(32,79,35,82),(33,84,36,81),(37,89,40,86),(38,88,41,85),(39,87,42,90),(43,92,46,95),(44,91,47,94),(45,96,48,93)])

90 conjugacy classes

 class 1 2A 2B 2C 3A 3B 3C 3D 3E 4A ··· 4F 4G 4H 4I 4J 4K ··· 4P 6A ··· 6F 6G ··· 6O 12A ··· 12L 12M ··· 12T 12U ··· 12AL 12AM ··· 12AX order 1 2 2 2 3 3 3 3 3 4 ··· 4 4 4 4 4 4 ··· 4 6 ··· 6 6 ··· 6 12 ··· 12 12 ··· 12 12 ··· 12 12 ··· 12 size 1 1 1 1 1 1 2 2 2 2 ··· 2 3 3 3 3 6 ··· 6 1 ··· 1 2 ··· 2 2 ··· 2 3 ··· 3 4 ··· 4 6 ··· 6

90 irreducible representations

 dim 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 4 4 4 4 type + + + + + - + - - + image C1 C2 C2 C2 C3 C4 C6 C6 C6 C12 S3 Q8 D6 Dic3 C4○D4 C3×S3 C3×Q8 S3×C6 C3×Dic3 C3×C4○D4 S3×Q8 Q8⋊3S3 C3×S3×Q8 C3×Q8⋊3S3 kernel C3×Q8×Dic3 Dic3×C12 C3×C4⋊Dic3 Q8×C3×C6 Q8×Dic3 Q8×C32 C4×Dic3 C4⋊Dic3 C6×Q8 C3×Q8 C6×Q8 C3×Dic3 C2×C12 C3×Q8 C3×C6 C2×Q8 Dic3 C2×C4 Q8 C6 C6 C6 C2 C2 # reps 1 3 3 1 2 8 6 6 2 16 1 2 3 4 2 2 4 6 8 4 1 1 2 2

Matrix representation of C3×Q8×Dic3 in GL4(𝔽13) generated by

 3 0 0 0 0 3 0 0 0 0 1 0 0 0 0 1
,
 12 0 0 0 0 12 0 0 0 0 0 1 0 0 12 0
,
 12 0 0 0 0 12 0 0 0 0 5 0 0 0 0 8
,
 4 0 0 0 0 10 0 0 0 0 1 0 0 0 0 1
,
 0 1 0 0 12 0 0 0 0 0 12 0 0 0 0 12
G:=sub<GL(4,GF(13))| [3,0,0,0,0,3,0,0,0,0,1,0,0,0,0,1],[12,0,0,0,0,12,0,0,0,0,0,12,0,0,1,0],[12,0,0,0,0,12,0,0,0,0,5,0,0,0,0,8],[4,0,0,0,0,10,0,0,0,0,1,0,0,0,0,1],[0,12,0,0,1,0,0,0,0,0,12,0,0,0,0,12] >;

C3×Q8×Dic3 in GAP, Magma, Sage, TeX

C_3\times Q_8\times {\rm Dic}_3
% in TeX

G:=Group("C3xQ8xDic3");
// GroupNames label

G:=SmallGroup(288,716);
// by ID

G=gap.SmallGroup(288,716);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-3,168,344,555,268,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^4=d^6=1,c^2=b^2,e^2=d^3,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c^-1=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽