Extensions 1→N→G→Q→1 with N=C4 and Q=C2×C3⋊Dic3

Direct product G=N×Q with N=C4 and Q=C2×C3⋊Dic3
dρLabelID
C2×C4×C3⋊Dic3288C2xC4xC3:Dic3288,779

Semidirect products G=N:Q with N=C4 and Q=C2×C3⋊Dic3
extensionφ:Q→Aut NdρLabelID
C41(C2×C3⋊Dic3) = D4×C3⋊Dic3φ: C2×C3⋊Dic3/C3⋊Dic3C2 ⊆ Aut C4144C4:1(C2xC3:Dic3)288,791
C42(C2×C3⋊Dic3) = C2×C12⋊Dic3φ: C2×C3⋊Dic3/C62C2 ⊆ Aut C4288C4:2(C2xC3:Dic3)288,782

Non-split extensions G=N.Q with N=C4 and Q=C2×C3⋊Dic3
extensionφ:Q→Aut NdρLabelID
C4.1(C2×C3⋊Dic3) = C62.116D4φ: C2×C3⋊Dic3/C3⋊Dic3C2 ⊆ Aut C4144C4.1(C2xC3:Dic3)288,307
C4.2(C2×C3⋊Dic3) = C62.117D4φ: C2×C3⋊Dic3/C3⋊Dic3C2 ⊆ Aut C4288C4.2(C2xC3:Dic3)288,310
C4.3(C2×C3⋊Dic3) = C62.39D4φ: C2×C3⋊Dic3/C3⋊Dic3C2 ⊆ Aut C472C4.3(C2xC3:Dic3)288,312
C4.4(C2×C3⋊Dic3) = Q8×C3⋊Dic3φ: C2×C3⋊Dic3/C3⋊Dic3C2 ⊆ Aut C4288C4.4(C2xC3:Dic3)288,802
C4.5(C2×C3⋊Dic3) = D4.(C3⋊Dic3)φ: C2×C3⋊Dic3/C3⋊Dic3C2 ⊆ Aut C4144C4.5(C2xC3:Dic3)288,805
C4.6(C2×C3⋊Dic3) = C242Dic3φ: C2×C3⋊Dic3/C62C2 ⊆ Aut C4288C4.6(C2xC3:Dic3)288,292
C4.7(C2×C3⋊Dic3) = C241Dic3φ: C2×C3⋊Dic3/C62C2 ⊆ Aut C4288C4.7(C2xC3:Dic3)288,293
C4.8(C2×C3⋊Dic3) = C12.59D12φ: C2×C3⋊Dic3/C62C2 ⊆ Aut C4144C4.8(C2xC3:Dic3)288,294
C4.9(C2×C3⋊Dic3) = C2×C24.S3central extension (φ=1)288C4.9(C2xC3:Dic3)288,286
C4.10(C2×C3⋊Dic3) = C24.94D6central extension (φ=1)144C4.10(C2xC3:Dic3)288,287
C4.11(C2×C3⋊Dic3) = C8×C3⋊Dic3central extension (φ=1)288C4.11(C2xC3:Dic3)288,288
C4.12(C2×C3⋊Dic3) = C24⋊Dic3central extension (φ=1)288C4.12(C2xC3:Dic3)288,290
C4.13(C2×C3⋊Dic3) = C22×C324C8central extension (φ=1)288C4.13(C2xC3:Dic3)288,777
C4.14(C2×C3⋊Dic3) = C2×C12.58D6central extension (φ=1)144C4.14(C2xC3:Dic3)288,778
C4.15(C2×C3⋊Dic3) = C62.247C23central extension (φ=1)144C4.15(C2xC3:Dic3)288,783

׿
×
𝔽