Extensions 1→N→G→Q→1 with N=C4 and Q=C2xC3:Dic3

Direct product G=NxQ with N=C4 and Q=C2xC3:Dic3
dρLabelID
C2xC4xC3:Dic3288C2xC4xC3:Dic3288,779

Semidirect products G=N:Q with N=C4 and Q=C2xC3:Dic3
extensionφ:Q→Aut NdρLabelID
C4:1(C2xC3:Dic3) = D4xC3:Dic3φ: C2xC3:Dic3/C3:Dic3C2 ⊆ Aut C4144C4:1(C2xC3:Dic3)288,791
C4:2(C2xC3:Dic3) = C2xC12:Dic3φ: C2xC3:Dic3/C62C2 ⊆ Aut C4288C4:2(C2xC3:Dic3)288,782

Non-split extensions G=N.Q with N=C4 and Q=C2xC3:Dic3
extensionφ:Q→Aut NdρLabelID
C4.1(C2xC3:Dic3) = C62.116D4φ: C2xC3:Dic3/C3:Dic3C2 ⊆ Aut C4144C4.1(C2xC3:Dic3)288,307
C4.2(C2xC3:Dic3) = C62.117D4φ: C2xC3:Dic3/C3:Dic3C2 ⊆ Aut C4288C4.2(C2xC3:Dic3)288,310
C4.3(C2xC3:Dic3) = C62.39D4φ: C2xC3:Dic3/C3:Dic3C2 ⊆ Aut C472C4.3(C2xC3:Dic3)288,312
C4.4(C2xC3:Dic3) = Q8xC3:Dic3φ: C2xC3:Dic3/C3:Dic3C2 ⊆ Aut C4288C4.4(C2xC3:Dic3)288,802
C4.5(C2xC3:Dic3) = D4.(C3:Dic3)φ: C2xC3:Dic3/C3:Dic3C2 ⊆ Aut C4144C4.5(C2xC3:Dic3)288,805
C4.6(C2xC3:Dic3) = C24:2Dic3φ: C2xC3:Dic3/C62C2 ⊆ Aut C4288C4.6(C2xC3:Dic3)288,292
C4.7(C2xC3:Dic3) = C24:1Dic3φ: C2xC3:Dic3/C62C2 ⊆ Aut C4288C4.7(C2xC3:Dic3)288,293
C4.8(C2xC3:Dic3) = C12.59D12φ: C2xC3:Dic3/C62C2 ⊆ Aut C4144C4.8(C2xC3:Dic3)288,294
C4.9(C2xC3:Dic3) = C2xC24.S3central extension (φ=1)288C4.9(C2xC3:Dic3)288,286
C4.10(C2xC3:Dic3) = C24.94D6central extension (φ=1)144C4.10(C2xC3:Dic3)288,287
C4.11(C2xC3:Dic3) = C8xC3:Dic3central extension (φ=1)288C4.11(C2xC3:Dic3)288,288
C4.12(C2xC3:Dic3) = C24:Dic3central extension (φ=1)288C4.12(C2xC3:Dic3)288,290
C4.13(C2xC3:Dic3) = C22xC32:4C8central extension (φ=1)288C4.13(C2xC3:Dic3)288,777
C4.14(C2xC3:Dic3) = C2xC12.58D6central extension (φ=1)144C4.14(C2xC3:Dic3)288,778
C4.15(C2xC3:Dic3) = C62.247C23central extension (φ=1)144C4.15(C2xC3:Dic3)288,783

׿
x
:
Z
F
o
wr
Q
<