# Extensions 1→N→G→Q→1 with N=C2×D12 and Q=S3

Direct product G=N×Q with N=C2×D12 and Q=S3
dρLabelID
C2×S3×D1248C2xS3xD12288,951

Semidirect products G=N:Q with N=C2×D12 and Q=S3
extensionφ:Q→Out NdρLabelID
(C2×D12)⋊1S3 = C2×C3⋊D24φ: S3/C3C2 ⊆ Out C2×D1248(C2xD12):1S3288,472
(C2×D12)⋊2S3 = C62.55C23φ: S3/C3C2 ⊆ Out C2×D1296(C2xD12):2S3288,533
(C2×D12)⋊3S3 = Dic3⋊D12φ: S3/C3C2 ⊆ Out C2×D1248(C2xD12):3S3288,534
(C2×D12)⋊4S3 = D62D12φ: S3/C3C2 ⊆ Out C2×D1296(C2xD12):4S3288,556
(C2×D12)⋊5S3 = C12⋊D12φ: S3/C3C2 ⊆ Out C2×D1248(C2xD12):5S3288,559
(C2×D12)⋊6S3 = D64D12φ: S3/C3C2 ⊆ Out C2×D1248(C2xD12):6S3288,570
(C2×D12)⋊7S3 = C2×C322D8φ: S3/C3C2 ⊆ Out C2×D1296(C2xD12):7S3288,469
(C2×D12)⋊8S3 = D1220D6φ: S3/C3C2 ⊆ Out C2×D12484(C2xD12):8S3288,471
(C2×D12)⋊9S3 = D12.28D6φ: S3/C3C2 ⊆ Out C2×D12484(C2xD12):9S3288,478
(C2×D12)⋊10S3 = C62.84C23φ: S3/C3C2 ⊆ Out C2×D1296(C2xD12):10S3288,562
(C2×D12)⋊11S3 = C122D12φ: S3/C3C2 ⊆ Out C2×D1248(C2xD12):11S3288,564
(C2×D12)⋊12S3 = C2×D12⋊S3φ: S3/C3C2 ⊆ Out C2×D1248(C2xD12):12S3288,944
(C2×D12)⋊13S3 = C2×D6⋊D6φ: S3/C3C2 ⊆ Out C2×D1248(C2xD12):13S3288,952
(C2×D12)⋊14S3 = D1224D6φ: S3/C3C2 ⊆ Out C2×D12484(C2xD12):14S3288,955
(C2×D12)⋊15S3 = C2×D125S3φ: trivial image96(C2xD12):15S3288,943

Non-split extensions G=N.Q with N=C2×D12 and Q=S3
extensionφ:Q→Out NdρLabelID
(C2×D12).1S3 = C6.16D24φ: S3/C3C2 ⊆ Out C2×D1296(C2xD12).1S3288,211
(C2×D12).2S3 = C2×D12.S3φ: S3/C3C2 ⊆ Out C2×D1296(C2xD12).2S3288,476
(C2×D12).3S3 = C12.27D12φ: S3/C3C2 ⊆ Out C2×D1296(C2xD12).3S3288,508
(C2×D12).4S3 = C62.54C23φ: S3/C3C2 ⊆ Out C2×D1296(C2xD12).4S3288,532
(C2×D12).5S3 = C12.D12φ: S3/C3C2 ⊆ Out C2×D12484(C2xD12).5S3288,206
(C2×D12).6S3 = D123Dic3φ: S3/C3C2 ⊆ Out C2×D1296(C2xD12).6S3288,210
(C2×D12).7S3 = C2×Dic6⋊S3φ: S3/C3C2 ⊆ Out C2×D1296(C2xD12).7S3288,474
(C2×D12).8S3 = C62.33C23φ: S3/C3C2 ⊆ Out C2×D1296(C2xD12).8S3288,511
(C2×D12).9S3 = D12⋊Dic3φ: S3/C3C2 ⊆ Out C2×D1296(C2xD12).9S3288,546
(C2×D12).10S3 = Dic3×D12φ: trivial image96(C2xD12).10S3288,540

׿
×
𝔽