direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×D12, C4⋊2D6, C6⋊1D4, C12⋊2C22, D6⋊1C22, C6.3C23, C22.10D6, C3⋊1(C2×D4), (C2×C4)⋊2S3, (C2×C12)⋊3C2, (C22×S3)⋊1C2, C2.4(C22×S3), (C2×C6).10C22, SmallGroup(48,36)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×D12
G = < a,b,c | a2=b12=c2=1, ab=ba, ac=ca, cbc=b-1 >
Subgroups: 124 in 54 conjugacy classes, 27 normal (9 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, S3, C6, C6, C2×C4, D4, C23, C12, D6, D6, C2×C6, C2×D4, D12, C2×C12, C22×S3, C2×D12
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, D12, C22×S3, C2×D12
Character table of C2×D12
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3 | 4A | 4B | 6A | 6B | 6C | 12A | 12B | 12C | 12D | |
size | 1 | 1 | 1 | 1 | 6 | 6 | 6 | 6 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ3 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -2 | -2 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | 2 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ11 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -1 | 2 | -2 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | orthogonal lifted from D6 |
ρ13 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | -1 | -2 | 2 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | orthogonal lifted from D6 |
ρ14 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | -1 | 1 | 1 | √3 | -√3 | √3 | -√3 | orthogonal lifted from D12 |
ρ16 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | -1 | 1 | 1 | -√3 | √3 | -√3 | √3 | orthogonal lifted from D12 |
ρ17 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 1 | -1 | 1 | √3 | √3 | -√3 | -√3 | orthogonal lifted from D12 |
ρ18 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -1 | 0 | 0 | 1 | -1 | 1 | -√3 | -√3 | √3 | √3 | orthogonal lifted from D12 |
(1 16)(2 17)(3 18)(4 19)(5 20)(6 21)(7 22)(8 23)(9 24)(10 13)(11 14)(12 15)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)
(1 3)(4 12)(5 11)(6 10)(7 9)(13 21)(14 20)(15 19)(16 18)(22 24)
G:=sub<Sym(24)| (1,16)(2,17)(3,18)(4,19)(5,20)(6,21)(7,22)(8,23)(9,24)(10,13)(11,14)(12,15), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,3)(4,12)(5,11)(6,10)(7,9)(13,21)(14,20)(15,19)(16,18)(22,24)>;
G:=Group( (1,16)(2,17)(3,18)(4,19)(5,20)(6,21)(7,22)(8,23)(9,24)(10,13)(11,14)(12,15), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,3)(4,12)(5,11)(6,10)(7,9)(13,21)(14,20)(15,19)(16,18)(22,24) );
G=PermutationGroup([[(1,16),(2,17),(3,18),(4,19),(5,20),(6,21),(7,22),(8,23),(9,24),(10,13),(11,14),(12,15)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24)], [(1,3),(4,12),(5,11),(6,10),(7,9),(13,21),(14,20),(15,19),(16,18),(22,24)]])
G:=TransitiveGroup(24,29);
C2×D12 is a maximal subgroup of
C6.D8 C2.D24 C12.46D4 C4⋊D12 C42⋊7S3 D6⋊D4 Dic3⋊D4 Dic3⋊5D4 D6.D4 C12⋊D4 C8⋊D6 C12⋊7D4 C12⋊3D4 C12.23D4 D4⋊D6 C2×S3×D4 D4○D12 Q8⋊D12
C2×D12 is a maximal quotient of
C12⋊2Q8 C4⋊D12 C42⋊7S3 D6⋊D4 C23.21D6 C12⋊D4 C4.D12 C4○D24 C8⋊D6 C8.D6 C12⋊7D4
Matrix representation of C2×D12 ►in GL3(𝔽13) generated by
12 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 1 |
1 | 0 | 0 |
0 | 3 | 10 |
0 | 3 | 6 |
12 | 0 | 0 |
0 | 3 | 10 |
0 | 7 | 10 |
G:=sub<GL(3,GF(13))| [12,0,0,0,1,0,0,0,1],[1,0,0,0,3,3,0,10,6],[12,0,0,0,3,7,0,10,10] >;
C2×D12 in GAP, Magma, Sage, TeX
C_2\times D_{12}
% in TeX
G:=Group("C2xD12");
// GroupNames label
G:=SmallGroup(48,36);
// by ID
G=gap.SmallGroup(48,36);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-3,182,42,804]);
// Polycyclic
G:=Group<a,b,c|a^2=b^12=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations
Export