Copied to
clipboard

G = C2×D12order 48 = 24·3

Direct product of C2 and D12

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×D12, C42D6, C61D4, C122C22, D61C22, C6.3C23, C22.10D6, C31(C2×D4), (C2×C4)⋊2S3, (C2×C12)⋊3C2, (C22×S3)⋊1C2, C2.4(C22×S3), (C2×C6).10C22, SmallGroup(48,36)

Series: Derived Chief Lower central Upper central

C1C6 — C2×D12
C1C3C6D6C22×S3 — C2×D12
C3C6 — C2×D12
C1C22C2×C4

Generators and relations for C2×D12
 G = < a,b,c | a2=b12=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 124 in 54 conjugacy classes, 27 normal (9 characteristic)
C1, C2, C2 [×2], C2 [×4], C3, C4 [×2], C22, C22 [×8], S3 [×4], C6, C6 [×2], C2×C4, D4 [×4], C23 [×2], C12 [×2], D6 [×4], D6 [×4], C2×C6, C2×D4, D12 [×4], C2×C12, C22×S3 [×2], C2×D12
Quotients: C1, C2 [×7], C22 [×7], S3, D4 [×2], C23, D6 [×3], C2×D4, D12 [×2], C22×S3, C2×D12

Character table of C2×D12

 class 12A2B2C2D2E2F2G34A4B6A6B6C12A12B12C12D
 size 111166662222222222
ρ1111111111111111111    trivial
ρ21-1-1111-1-111-1-1-11-111-1    linear of order 2
ρ31-1-11-1-11111-1-1-11-111-1    linear of order 2
ρ41-1-111-1-111-11-1-111-1-11    linear of order 2
ρ51-1-11-111-11-11-1-111-1-11    linear of order 2
ρ61111-1-1-1-11111111111    linear of order 2
ρ711111-11-11-1-1111-1-1-1-1    linear of order 2
ρ81111-11-111-1-1111-1-1-1-1    linear of order 2
ρ922220000-1-2-2-1-1-11111    orthogonal lifted from D6
ρ1022220000-122-1-1-1-1-1-1-1    orthogonal lifted from S3
ρ1122-2-200002002-2-20000    orthogonal lifted from D4
ρ122-2-220000-12-211-11-1-11    orthogonal lifted from D6
ρ132-2-220000-1-2211-1-111-1    orthogonal lifted from D6
ρ142-22-20000200-22-20000    orthogonal lifted from D4
ρ1522-2-20000-100-1113-33-3    orthogonal lifted from D12
ρ1622-2-20000-100-111-33-33    orthogonal lifted from D12
ρ172-22-20000-1001-1133-3-3    orthogonal lifted from D12
ρ182-22-20000-1001-11-3-333    orthogonal lifted from D12

Permutation representations of C2×D12
On 24 points - transitive group 24T29
Generators in S24
(1 13)(2 14)(3 15)(4 16)(5 17)(6 18)(7 19)(8 20)(9 21)(10 22)(11 23)(12 24)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)
(1 3)(4 12)(5 11)(6 10)(7 9)(13 15)(16 24)(17 23)(18 22)(19 21)

G:=sub<Sym(24)| (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,3)(4,12)(5,11)(6,10)(7,9)(13,15)(16,24)(17,23)(18,22)(19,21)>;

G:=Group( (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,3)(4,12)(5,11)(6,10)(7,9)(13,15)(16,24)(17,23)(18,22)(19,21) );

G=PermutationGroup([(1,13),(2,14),(3,15),(4,16),(5,17),(6,18),(7,19),(8,20),(9,21),(10,22),(11,23),(12,24)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24)], [(1,3),(4,12),(5,11),(6,10),(7,9),(13,15),(16,24),(17,23),(18,22),(19,21)])

G:=TransitiveGroup(24,29);

Matrix representation of C2×D12 in GL3(𝔽13) generated by

1200
010
001
,
100
0310
036
,
1200
0310
0710
G:=sub<GL(3,GF(13))| [12,0,0,0,1,0,0,0,1],[1,0,0,0,3,3,0,10,6],[12,0,0,0,3,7,0,10,10] >;

C2×D12 in GAP, Magma, Sage, TeX

C_2\times D_{12}
% in TeX

G:=Group("C2xD12");
// GroupNames label

G:=SmallGroup(48,36);
// by ID

G=gap.SmallGroup(48,36);
# by ID

G:=PCGroup([5,-2,-2,-2,-2,-3,182,42,804]);
// Polycyclic

G:=Group<a,b,c|a^2=b^12=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽