direct product, metabelian, supersoluble, monomial
Aliases: C2×C3⋊D24, C6⋊2D24, D12⋊17D6, C12.21D12, C62.43D4, C3⋊C8⋊23D6, (C3×C6)⋊3D8, C3⋊3(C2×D24), C32⋊6(C2×D8), C6⋊1(D4⋊S3), (C6×D12)⋊3C2, (C2×D12)⋊1S3, C6.65(C2×D12), (C2×C6).58D12, (C3×C12).62D4, (C2×C12).113D6, C4.5(C3⋊D12), (C3×D12)⋊21C22, C12.70(C3⋊D4), (C6×C12).73C22, (C3×C12).60C23, C12.80(C22×S3), C12⋊S3⋊16C22, C22.19(C3⋊D12), (C6×C3⋊C8)⋊9C2, (C2×C3⋊C8)⋊5S3, C4.50(C2×S32), C3⋊1(C2×D4⋊S3), (C2×C4).64S32, C6.1(C2×C3⋊D4), (C3×C3⋊C8)⋊27C22, (C3×C6).64(C2×D4), (C2×C12⋊S3)⋊9C2, C2.5(C2×C3⋊D12), (C2×C6).36(C3⋊D4), SmallGroup(288,472)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×C3⋊D24
G = < a,b,c,d | a2=b3=c24=d2=1, ab=ba, ac=ca, ad=da, cbc-1=dbd=b-1, dcd=c-1 >
Subgroups: 962 in 179 conjugacy classes, 52 normal (30 characteristic)
C1, C2, C2, C2, C3, C3, C4, C22, C22, S3, C6, C6, C6, C8, C2×C4, D4, C23, C32, C12, C12, D6, C2×C6, C2×C6, C2×C8, D8, C2×D4, C3×S3, C3⋊S3, C3×C6, C3×C6, C3⋊C8, C24, D12, D12, C2×C12, C2×C12, C3×D4, C22×S3, C22×C6, C2×D8, C3×C12, S3×C6, C2×C3⋊S3, C62, D24, C2×C3⋊C8, D4⋊S3, C2×C24, C2×D12, C2×D12, C6×D4, C3×C3⋊C8, C3×D12, C3×D12, C12⋊S3, C12⋊S3, C6×C12, S3×C2×C6, C22×C3⋊S3, C2×D24, C2×D4⋊S3, C3⋊D24, C6×C3⋊C8, C6×D12, C2×C12⋊S3, C2×C3⋊D24
Quotients: C1, C2, C22, S3, D4, C23, D6, D8, C2×D4, D12, C3⋊D4, C22×S3, C2×D8, S32, D24, D4⋊S3, C2×D12, C2×C3⋊D4, C3⋊D12, C2×S32, C2×D24, C2×D4⋊S3, C3⋊D24, C2×C3⋊D12, C2×C3⋊D24
(1 38)(2 39)(3 40)(4 41)(5 42)(6 43)(7 44)(8 45)(9 46)(10 47)(11 48)(12 25)(13 26)(14 27)(15 28)(16 29)(17 30)(18 31)(19 32)(20 33)(21 34)(22 35)(23 36)(24 37)
(1 17 9)(2 10 18)(3 19 11)(4 12 20)(5 21 13)(6 14 22)(7 23 15)(8 16 24)(25 33 41)(26 42 34)(27 35 43)(28 44 36)(29 37 45)(30 46 38)(31 39 47)(32 48 40)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 40)(2 39)(3 38)(4 37)(5 36)(6 35)(7 34)(8 33)(9 32)(10 31)(11 30)(12 29)(13 28)(14 27)(15 26)(16 25)(17 48)(18 47)(19 46)(20 45)(21 44)(22 43)(23 42)(24 41)
G:=sub<Sym(48)| (1,38)(2,39)(3,40)(4,41)(5,42)(6,43)(7,44)(8,45)(9,46)(10,47)(11,48)(12,25)(13,26)(14,27)(15,28)(16,29)(17,30)(18,31)(19,32)(20,33)(21,34)(22,35)(23,36)(24,37), (1,17,9)(2,10,18)(3,19,11)(4,12,20)(5,21,13)(6,14,22)(7,23,15)(8,16,24)(25,33,41)(26,42,34)(27,35,43)(28,44,36)(29,37,45)(30,46,38)(31,39,47)(32,48,40), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,40)(2,39)(3,38)(4,37)(5,36)(6,35)(7,34)(8,33)(9,32)(10,31)(11,30)(12,29)(13,28)(14,27)(15,26)(16,25)(17,48)(18,47)(19,46)(20,45)(21,44)(22,43)(23,42)(24,41)>;
G:=Group( (1,38)(2,39)(3,40)(4,41)(5,42)(6,43)(7,44)(8,45)(9,46)(10,47)(11,48)(12,25)(13,26)(14,27)(15,28)(16,29)(17,30)(18,31)(19,32)(20,33)(21,34)(22,35)(23,36)(24,37), (1,17,9)(2,10,18)(3,19,11)(4,12,20)(5,21,13)(6,14,22)(7,23,15)(8,16,24)(25,33,41)(26,42,34)(27,35,43)(28,44,36)(29,37,45)(30,46,38)(31,39,47)(32,48,40), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,40)(2,39)(3,38)(4,37)(5,36)(6,35)(7,34)(8,33)(9,32)(10,31)(11,30)(12,29)(13,28)(14,27)(15,26)(16,25)(17,48)(18,47)(19,46)(20,45)(21,44)(22,43)(23,42)(24,41) );
G=PermutationGroup([[(1,38),(2,39),(3,40),(4,41),(5,42),(6,43),(7,44),(8,45),(9,46),(10,47),(11,48),(12,25),(13,26),(14,27),(15,28),(16,29),(17,30),(18,31),(19,32),(20,33),(21,34),(22,35),(23,36),(24,37)], [(1,17,9),(2,10,18),(3,19,11),(4,12,20),(5,21,13),(6,14,22),(7,23,15),(8,16,24),(25,33,41),(26,42,34),(27,35,43),(28,44,36),(29,37,45),(30,46,38),(31,39,47),(32,48,40)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,40),(2,39),(3,38),(4,37),(5,36),(6,35),(7,34),(8,33),(9,32),(10,31),(11,30),(12,29),(13,28),(14,27),(15,26),(16,25),(17,48),(18,47),(19,46),(20,45),(21,44),(22,43),(23,42),(24,41)]])
48 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 3C | 4A | 4B | 6A | ··· | 6F | 6G | 6H | 6I | 6J | 6K | 6L | 6M | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 12D | 12E | ··· | 12J | 24A | ··· | 24H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 12 | 12 | 12 | 12 | 12 | ··· | 12 | 24 | ··· | 24 |
size | 1 | 1 | 1 | 1 | 12 | 12 | 36 | 36 | 2 | 2 | 4 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 12 | 12 | 12 | 12 | 6 | 6 | 6 | 6 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 6 | ··· | 6 |
48 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | S3 | S3 | D4 | D4 | D6 | D6 | D6 | D8 | D12 | C3⋊D4 | D12 | C3⋊D4 | D24 | S32 | D4⋊S3 | C3⋊D12 | C2×S32 | C3⋊D12 | C3⋊D24 |
kernel | C2×C3⋊D24 | C3⋊D24 | C6×C3⋊C8 | C6×D12 | C2×C12⋊S3 | C2×C3⋊C8 | C2×D12 | C3×C12 | C62 | C3⋊C8 | D12 | C2×C12 | C3×C6 | C12 | C12 | C2×C6 | C2×C6 | C6 | C2×C4 | C6 | C4 | C4 | C22 | C2 |
# reps | 1 | 4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 2 | 2 | 2 | 2 | 8 | 1 | 2 | 1 | 1 | 1 | 4 |
Matrix representation of C2×C3⋊D24 ►in GL6(𝔽73)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 1 |
0 | 0 | 0 | 0 | 72 | 0 |
13 | 50 | 0 | 0 | 0 | 0 |
35 | 28 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 72 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
72 | 0 | 0 | 0 | 0 | 0 |
7 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,1,0],[13,35,0,0,0,0,50,28,0,0,0,0,0,0,0,72,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[72,7,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,1,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;
C2×C3⋊D24 in GAP, Magma, Sage, TeX
C_2\times C_3\rtimes D_{24}
% in TeX
G:=Group("C2xC3:D24");
// GroupNames label
G:=SmallGroup(288,472);
// by ID
G=gap.SmallGroup(288,472);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,141,176,675,80,1356,9414]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^3=c^24=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations