# Extensions 1→N→G→Q→1 with N=C6 and Q=C6×Q8

Direct product G=N×Q with N=C6 and Q=C6×Q8
dρLabelID
Q8×C62288Q8xC6^2288,1020

Semidirect products G=N:Q with N=C6 and Q=C6×Q8
extensionφ:Q→Aut NdρLabelID
C61(C6×Q8) = C2×C6×Dic6φ: C6×Q8/C2×C12C2 ⊆ Aut C696C6:1(C6xQ8)288,988
C62(C6×Q8) = S3×C6×Q8φ: C6×Q8/C3×Q8C2 ⊆ Aut C696C6:2(C6xQ8)288,995

Non-split extensions G=N.Q with N=C6 and Q=C6×Q8
extensionφ:Q→Aut NdρLabelID
C6.1(C6×Q8) = C12×Dic6φ: C6×Q8/C2×C12C2 ⊆ Aut C696C6.1(C6xQ8)288,639
C6.2(C6×Q8) = C3×C122Q8φ: C6×Q8/C2×C12C2 ⊆ Aut C696C6.2(C6xQ8)288,640
C6.3(C6×Q8) = C3×C12.6Q8φ: C6×Q8/C2×C12C2 ⊆ Aut C696C6.3(C6xQ8)288,641
C6.4(C6×Q8) = C3×Dic3.D4φ: C6×Q8/C2×C12C2 ⊆ Aut C648C6.4(C6xQ8)288,649
C6.5(C6×Q8) = C3×C4.Dic6φ: C6×Q8/C2×C12C2 ⊆ Aut C696C6.5(C6xQ8)288,661
C6.6(C6×Q8) = C6×Dic3⋊C4φ: C6×Q8/C2×C12C2 ⊆ Aut C696C6.6(C6xQ8)288,694
C6.7(C6×Q8) = C3×C12.48D4φ: C6×Q8/C2×C12C2 ⊆ Aut C648C6.7(C6xQ8)288,695
C6.8(C6×Q8) = C6×C4⋊Dic3φ: C6×Q8/C2×C12C2 ⊆ Aut C696C6.8(C6xQ8)288,696
C6.9(C6×Q8) = C3×Dic6⋊C4φ: C6×Q8/C3×Q8C2 ⊆ Aut C696C6.9(C6xQ8)288,658
C6.10(C6×Q8) = C3×C12⋊Q8φ: C6×Q8/C3×Q8C2 ⊆ Aut C696C6.10(C6xQ8)288,659
C6.11(C6×Q8) = C3×Dic3.Q8φ: C6×Q8/C3×Q8C2 ⊆ Aut C696C6.11(C6xQ8)288,660
C6.12(C6×Q8) = C3×S3×C4⋊C4φ: C6×Q8/C3×Q8C2 ⊆ Aut C696C6.12(C6xQ8)288,662
C6.13(C6×Q8) = C3×D6⋊Q8φ: C6×Q8/C3×Q8C2 ⊆ Aut C696C6.13(C6xQ8)288,667
C6.14(C6×Q8) = C3×C4.D12φ: C6×Q8/C3×Q8C2 ⊆ Aut C696C6.14(C6xQ8)288,668
C6.15(C6×Q8) = C3×Dic3⋊Q8φ: C6×Q8/C3×Q8C2 ⊆ Aut C696C6.15(C6xQ8)288,715
C6.16(C6×Q8) = C3×Q8×Dic3φ: C6×Q8/C3×Q8C2 ⊆ Aut C696C6.16(C6xQ8)288,716
C6.17(C6×Q8) = C3×D63Q8φ: C6×Q8/C3×Q8C2 ⊆ Aut C696C6.17(C6xQ8)288,717
C6.18(C6×Q8) = C4⋊C4×C18central extension (φ=1)288C6.18(C6xQ8)288,166
C6.19(C6×Q8) = Q8×C36central extension (φ=1)288C6.19(C6xQ8)288,169
C6.20(C6×Q8) = C9×C22⋊Q8central extension (φ=1)144C6.20(C6xQ8)288,172
C6.21(C6×Q8) = C9×C42.C2central extension (φ=1)288C6.21(C6xQ8)288,175
C6.22(C6×Q8) = C9×C4⋊Q8central extension (φ=1)288C6.22(C6xQ8)288,178
C6.23(C6×Q8) = Q8×C2×C18central extension (φ=1)288C6.23(C6xQ8)288,369
C6.24(C6×Q8) = C4⋊C4×C3×C6central extension (φ=1)288C6.24(C6xQ8)288,813
C6.25(C6×Q8) = Q8×C3×C12central extension (φ=1)288C6.25(C6xQ8)288,816
C6.26(C6×Q8) = C32×C22⋊Q8central extension (φ=1)144C6.26(C6xQ8)288,819
C6.27(C6×Q8) = C32×C42.C2central extension (φ=1)288C6.27(C6xQ8)288,822
C6.28(C6×Q8) = C32×C4⋊Q8central extension (φ=1)288C6.28(C6xQ8)288,825

׿
×
𝔽