Extensions 1→N→G→Q→1 with N=C6 and Q=S3×C8

Direct product G=N×Q with N=C6 and Q=S3×C8
dρLabelID
S3×C2×C2496S3xC2xC24288,670

Semidirect products G=N:Q with N=C6 and Q=S3×C8
extensionφ:Q→Aut NdρLabelID
C61(S3×C8) = C2×C12.29D6φ: S3×C8/C3⋊C8C2 ⊆ Aut C648C6:1(S3xC8)288,464
C62(S3×C8) = C2×C8×C3⋊S3φ: S3×C8/C24C2 ⊆ Aut C6144C6:2(S3xC8)288,756
C63(S3×C8) = C2×S3×C3⋊C8φ: S3×C8/C4×S3C2 ⊆ Aut C696C6:3(S3xC8)288,460

Non-split extensions G=N.Q with N=C6 and Q=S3×C8
extensionφ:Q→Aut NdρLabelID
C6.1(S3×C8) = C24.60D6φ: S3×C8/C3⋊C8C2 ⊆ Aut C6484C6.1(S3xC8)288,190
C6.2(S3×C8) = C24.62D6φ: S3×C8/C3⋊C8C2 ⊆ Aut C6484C6.2(S3xC8)288,192
C6.3(S3×C8) = C6.(S3×C8)φ: S3×C8/C3⋊C8C2 ⊆ Aut C696C6.3(S3xC8)288,201
C6.4(S3×C8) = C12.78D12φ: S3×C8/C3⋊C8C2 ⊆ Aut C648C6.4(S3xC8)288,205
C6.5(S3×C8) = C12.15Dic6φ: S3×C8/C3⋊C8C2 ⊆ Aut C696C6.5(S3xC8)288,220
C6.6(S3×C8) = C16×D9φ: S3×C8/C24C2 ⊆ Aut C61442C6.6(S3xC8)288,4
C6.7(S3×C8) = C16⋊D9φ: S3×C8/C24C2 ⊆ Aut C61442C6.7(S3xC8)288,5
C6.8(S3×C8) = C8×Dic9φ: S3×C8/C24C2 ⊆ Aut C6288C6.8(S3xC8)288,21
C6.9(S3×C8) = Dic9⋊C8φ: S3×C8/C24C2 ⊆ Aut C6288C6.9(S3xC8)288,22
C6.10(S3×C8) = D18⋊C8φ: S3×C8/C24C2 ⊆ Aut C6144C6.10(S3xC8)288,27
C6.11(S3×C8) = C2×C8×D9φ: S3×C8/C24C2 ⊆ Aut C6144C6.11(S3xC8)288,110
C6.12(S3×C8) = C16×C3⋊S3φ: S3×C8/C24C2 ⊆ Aut C6144C6.12(S3xC8)288,272
C6.13(S3×C8) = C48⋊S3φ: S3×C8/C24C2 ⊆ Aut C6144C6.13(S3xC8)288,273
C6.14(S3×C8) = C8×C3⋊Dic3φ: S3×C8/C24C2 ⊆ Aut C6288C6.14(S3xC8)288,288
C6.15(S3×C8) = C12.30Dic6φ: S3×C8/C24C2 ⊆ Aut C6288C6.15(S3xC8)288,289
C6.16(S3×C8) = C12.60D12φ: S3×C8/C24C2 ⊆ Aut C6144C6.16(S3xC8)288,295
C6.17(S3×C8) = S3×C3⋊C16φ: S3×C8/C4×S3C2 ⊆ Aut C6964C6.17(S3xC8)288,189
C6.18(S3×C8) = C24.61D6φ: S3×C8/C4×S3C2 ⊆ Aut C6964C6.18(S3xC8)288,191
C6.19(S3×C8) = Dic3×C3⋊C8φ: S3×C8/C4×S3C2 ⊆ Aut C696C6.19(S3xC8)288,200
C6.20(S3×C8) = C12.77D12φ: S3×C8/C4×S3C2 ⊆ Aut C696C6.20(S3xC8)288,204
C6.21(S3×C8) = C12.81D12φ: S3×C8/C4×S3C2 ⊆ Aut C696C6.21(S3xC8)288,219
C6.22(S3×C8) = S3×C48central extension (φ=1)962C6.22(S3xC8)288,231
C6.23(S3×C8) = C3×D6.C8central extension (φ=1)962C6.23(S3xC8)288,232
C6.24(S3×C8) = Dic3×C24central extension (φ=1)96C6.24(S3xC8)288,247
C6.25(S3×C8) = C3×Dic3⋊C8central extension (φ=1)96C6.25(S3xC8)288,248
C6.26(S3×C8) = C3×D6⋊C8central extension (φ=1)96C6.26(S3xC8)288,254

׿
×
𝔽