extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.1(S3×C8) = C24.60D6 | φ: S3×C8/C3⋊C8 → C2 ⊆ Aut C6 | 48 | 4 | C6.1(S3xC8) | 288,190 |
C6.2(S3×C8) = C24.62D6 | φ: S3×C8/C3⋊C8 → C2 ⊆ Aut C6 | 48 | 4 | C6.2(S3xC8) | 288,192 |
C6.3(S3×C8) = C6.(S3×C8) | φ: S3×C8/C3⋊C8 → C2 ⊆ Aut C6 | 96 | | C6.3(S3xC8) | 288,201 |
C6.4(S3×C8) = C12.78D12 | φ: S3×C8/C3⋊C8 → C2 ⊆ Aut C6 | 48 | | C6.4(S3xC8) | 288,205 |
C6.5(S3×C8) = C12.15Dic6 | φ: S3×C8/C3⋊C8 → C2 ⊆ Aut C6 | 96 | | C6.5(S3xC8) | 288,220 |
C6.6(S3×C8) = C16×D9 | φ: S3×C8/C24 → C2 ⊆ Aut C6 | 144 | 2 | C6.6(S3xC8) | 288,4 |
C6.7(S3×C8) = C16⋊D9 | φ: S3×C8/C24 → C2 ⊆ Aut C6 | 144 | 2 | C6.7(S3xC8) | 288,5 |
C6.8(S3×C8) = C8×Dic9 | φ: S3×C8/C24 → C2 ⊆ Aut C6 | 288 | | C6.8(S3xC8) | 288,21 |
C6.9(S3×C8) = Dic9⋊C8 | φ: S3×C8/C24 → C2 ⊆ Aut C6 | 288 | | C6.9(S3xC8) | 288,22 |
C6.10(S3×C8) = D18⋊C8 | φ: S3×C8/C24 → C2 ⊆ Aut C6 | 144 | | C6.10(S3xC8) | 288,27 |
C6.11(S3×C8) = C2×C8×D9 | φ: S3×C8/C24 → C2 ⊆ Aut C6 | 144 | | C6.11(S3xC8) | 288,110 |
C6.12(S3×C8) = C16×C3⋊S3 | φ: S3×C8/C24 → C2 ⊆ Aut C6 | 144 | | C6.12(S3xC8) | 288,272 |
C6.13(S3×C8) = C48⋊S3 | φ: S3×C8/C24 → C2 ⊆ Aut C6 | 144 | | C6.13(S3xC8) | 288,273 |
C6.14(S3×C8) = C8×C3⋊Dic3 | φ: S3×C8/C24 → C2 ⊆ Aut C6 | 288 | | C6.14(S3xC8) | 288,288 |
C6.15(S3×C8) = C12.30Dic6 | φ: S3×C8/C24 → C2 ⊆ Aut C6 | 288 | | C6.15(S3xC8) | 288,289 |
C6.16(S3×C8) = C12.60D12 | φ: S3×C8/C24 → C2 ⊆ Aut C6 | 144 | | C6.16(S3xC8) | 288,295 |
C6.17(S3×C8) = S3×C3⋊C16 | φ: S3×C8/C4×S3 → C2 ⊆ Aut C6 | 96 | 4 | C6.17(S3xC8) | 288,189 |
C6.18(S3×C8) = C24.61D6 | φ: S3×C8/C4×S3 → C2 ⊆ Aut C6 | 96 | 4 | C6.18(S3xC8) | 288,191 |
C6.19(S3×C8) = Dic3×C3⋊C8 | φ: S3×C8/C4×S3 → C2 ⊆ Aut C6 | 96 | | C6.19(S3xC8) | 288,200 |
C6.20(S3×C8) = C12.77D12 | φ: S3×C8/C4×S3 → C2 ⊆ Aut C6 | 96 | | C6.20(S3xC8) | 288,204 |
C6.21(S3×C8) = C12.81D12 | φ: S3×C8/C4×S3 → C2 ⊆ Aut C6 | 96 | | C6.21(S3xC8) | 288,219 |
C6.22(S3×C8) = S3×C48 | central extension (φ=1) | 96 | 2 | C6.22(S3xC8) | 288,231 |
C6.23(S3×C8) = C3×D6.C8 | central extension (φ=1) | 96 | 2 | C6.23(S3xC8) | 288,232 |
C6.24(S3×C8) = Dic3×C24 | central extension (φ=1) | 96 | | C6.24(S3xC8) | 288,247 |
C6.25(S3×C8) = C3×Dic3⋊C8 | central extension (φ=1) | 96 | | C6.25(S3xC8) | 288,248 |
C6.26(S3×C8) = C3×D6⋊C8 | central extension (φ=1) | 96 | | C6.26(S3xC8) | 288,254 |