Extensions 1→N→G→Q→1 with N=C3×D24 and Q=C2

Direct product G=N×Q with N=C3×D24 and Q=C2
dρLabelID
C6×D2496C6xD24288,674

Semidirect products G=N:Q with N=C3×D24 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×D24)⋊1C2 = C246D6φ: C2/C1C2 ⊆ Out C3×D24484(C3xD24):1C2288,446
(C3×D24)⋊2C2 = D24⋊S3φ: C2/C1C2 ⊆ Out C3×D24484(C3xD24):2C2288,443
(C3×D24)⋊3C2 = C3×C8⋊D6φ: C2/C1C2 ⊆ Out C3×D24484(C3xD24):3C2288,679
(C3×D24)⋊4C2 = C3×D48φ: C2/C1C2 ⊆ Out C3×D24962(C3xD24):4C2288,233
(C3×D24)⋊5C2 = C322D16φ: C2/C1C2 ⊆ Out C3×D24964(C3xD24):5C2288,193
(C3×D24)⋊6C2 = C3⋊D48φ: C2/C1C2 ⊆ Out C3×D24484+(C3xD24):6C2288,194
(C3×D24)⋊7C2 = C3×C3⋊D16φ: C2/C1C2 ⊆ Out C3×D24484(C3xD24):7C2288,260
(C3×D24)⋊8C2 = S3×D24φ: C2/C1C2 ⊆ Out C3×D24484+(C3xD24):8C2288,441
(C3×D24)⋊9C2 = C244D6φ: C2/C1C2 ⊆ Out C3×D24484(C3xD24):9C2288,445
(C3×D24)⋊10C2 = D247S3φ: C2/C1C2 ⊆ Out C3×D24964-(C3xD24):10C2288,455
(C3×D24)⋊11C2 = D245S3φ: C2/C1C2 ⊆ Out C3×D24484(C3xD24):11C2288,458
(C3×D24)⋊12C2 = C3×S3×D8φ: C2/C1C2 ⊆ Out C3×D24484(C3xD24):12C2288,681
(C3×D24)⋊13C2 = C3×D24⋊C2φ: C2/C1C2 ⊆ Out C3×D24964(C3xD24):13C2288,690
(C3×D24)⋊14C2 = C3×Q83D6φ: C2/C1C2 ⊆ Out C3×D24484(C3xD24):14C2288,685
(C3×D24)⋊15C2 = C3×C4○D24φ: trivial image482(C3xD24):15C2288,675

Non-split extensions G=N.Q with N=C3×D24 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×D24).1C2 = C3×C48⋊C2φ: C2/C1C2 ⊆ Out C3×D24962(C3xD24).1C2288,234
(C3×D24).2C2 = D24.S3φ: C2/C1C2 ⊆ Out C3×D24964(C3xD24).2C2288,195
(C3×D24).3C2 = C323SD32φ: C2/C1C2 ⊆ Out C3×D24964-(C3xD24).3C2288,196
(C3×D24).4C2 = C3×C8.6D6φ: C2/C1C2 ⊆ Out C3×D24964(C3xD24).4C2288,262

׿
×
𝔽