Extensions 1→N→G→Q→1 with N=C3xD24 and Q=C2

Direct product G=NxQ with N=C3xD24 and Q=C2
dρLabelID
C6xD2496C6xD24288,674

Semidirect products G=N:Q with N=C3xD24 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xD24):1C2 = C24:6D6φ: C2/C1C2 ⊆ Out C3xD24484(C3xD24):1C2288,446
(C3xD24):2C2 = D24:S3φ: C2/C1C2 ⊆ Out C3xD24484(C3xD24):2C2288,443
(C3xD24):3C2 = C3xC8:D6φ: C2/C1C2 ⊆ Out C3xD24484(C3xD24):3C2288,679
(C3xD24):4C2 = C3xD48φ: C2/C1C2 ⊆ Out C3xD24962(C3xD24):4C2288,233
(C3xD24):5C2 = C32:2D16φ: C2/C1C2 ⊆ Out C3xD24964(C3xD24):5C2288,193
(C3xD24):6C2 = C3:D48φ: C2/C1C2 ⊆ Out C3xD24484+(C3xD24):6C2288,194
(C3xD24):7C2 = C3xC3:D16φ: C2/C1C2 ⊆ Out C3xD24484(C3xD24):7C2288,260
(C3xD24):8C2 = S3xD24φ: C2/C1C2 ⊆ Out C3xD24484+(C3xD24):8C2288,441
(C3xD24):9C2 = C24:4D6φ: C2/C1C2 ⊆ Out C3xD24484(C3xD24):9C2288,445
(C3xD24):10C2 = D24:7S3φ: C2/C1C2 ⊆ Out C3xD24964-(C3xD24):10C2288,455
(C3xD24):11C2 = D24:5S3φ: C2/C1C2 ⊆ Out C3xD24484(C3xD24):11C2288,458
(C3xD24):12C2 = C3xS3xD8φ: C2/C1C2 ⊆ Out C3xD24484(C3xD24):12C2288,681
(C3xD24):13C2 = C3xD24:C2φ: C2/C1C2 ⊆ Out C3xD24964(C3xD24):13C2288,690
(C3xD24):14C2 = C3xQ8:3D6φ: C2/C1C2 ⊆ Out C3xD24484(C3xD24):14C2288,685
(C3xD24):15C2 = C3xC4oD24φ: trivial image482(C3xD24):15C2288,675

Non-split extensions G=N.Q with N=C3xD24 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3xD24).1C2 = C3xC48:C2φ: C2/C1C2 ⊆ Out C3xD24962(C3xD24).1C2288,234
(C3xD24).2C2 = D24.S3φ: C2/C1C2 ⊆ Out C3xD24964(C3xD24).2C2288,195
(C3xD24).3C2 = C32:3SD32φ: C2/C1C2 ⊆ Out C3xD24964-(C3xD24).3C2288,196
(C3xD24).4C2 = C3xC8.6D6φ: C2/C1C2 ⊆ Out C3xD24964(C3xD24).4C2288,262

׿
x
:
Z
F
o
wr
Q
<