Copied to
clipboard

G = C244D6order 288 = 25·32

4th semidirect product of C24 and D6 acting via D6/C3=C22

metabelian, supersoluble, monomial

Aliases: C244D6, D244S3, D121D6, C87S32, C3⋊S32D8, C32(S3×D8), C324(C2×D8), (C3×D24)⋊9C2, C6.29(S3×D4), D6⋊D61C2, (C3×C24)⋊7C22, C322D82C2, (C3×D12)⋊3C22, C3⋊Dic3.40D4, C2.6(D6⋊D6), (C3×C12).45C23, C12.68(C22×S3), C324C817C22, (C8×C3⋊S3)⋊1C2, C4.66(C2×S32), (C2×C3⋊S3).41D4, (C3×C6).29(C2×D4), (C4×C3⋊S3).66C22, SmallGroup(288,445)

Series: Derived Chief Lower central Upper central

C1C3×C12 — C244D6
C1C3C32C3×C6C3×C12C3×D12D6⋊D6 — C244D6
C32C3×C6C3×C12 — C244D6
C1C2C4C8

Generators and relations for C244D6
 G = < a,b,c | a24=b6=c2=1, bab-1=a-1, cac=a17, cbc=b-1 >

Subgroups: 882 in 163 conjugacy classes, 40 normal (14 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, C8, C2×C4, D4, C23, C32, Dic3, C12, C12, D6, C2×C6, C2×C8, D8, C2×D4, C3×S3, C3⋊S3, C3×C6, C3⋊C8, C24, C24, C4×S3, D12, C3⋊D4, C3×D4, C22×S3, C2×D8, C3⋊Dic3, C3×C12, S32, S3×C6, C2×C3⋊S3, S3×C8, D24, D4⋊S3, C3×D8, S3×D4, C324C8, C3×C24, D6⋊S3, C3×D12, C4×C3⋊S3, C2×S32, S3×D8, C322D8, C3×D24, C8×C3⋊S3, D6⋊D6, C244D6
Quotients: C1, C2, C22, S3, D4, C23, D6, D8, C2×D4, C22×S3, C2×D8, S32, S3×D4, C2×S32, S3×D8, D6⋊D6, C244D6

Smallest permutation representation of C244D6
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 44 17 28 9 36)(2 43 18 27 10 35)(3 42 19 26 11 34)(4 41 20 25 12 33)(5 40 21 48 13 32)(6 39 22 47 14 31)(7 38 23 46 15 30)(8 37 24 45 16 29)
(1 5)(2 22)(3 15)(4 8)(6 18)(7 11)(9 21)(10 14)(12 24)(13 17)(16 20)(19 23)(25 45)(26 38)(27 31)(28 48)(29 41)(30 34)(32 44)(33 37)(35 47)(36 40)(39 43)(42 46)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,44,17,28,9,36)(2,43,18,27,10,35)(3,42,19,26,11,34)(4,41,20,25,12,33)(5,40,21,48,13,32)(6,39,22,47,14,31)(7,38,23,46,15,30)(8,37,24,45,16,29), (1,5)(2,22)(3,15)(4,8)(6,18)(7,11)(9,21)(10,14)(12,24)(13,17)(16,20)(19,23)(25,45)(26,38)(27,31)(28,48)(29,41)(30,34)(32,44)(33,37)(35,47)(36,40)(39,43)(42,46)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,44,17,28,9,36)(2,43,18,27,10,35)(3,42,19,26,11,34)(4,41,20,25,12,33)(5,40,21,48,13,32)(6,39,22,47,14,31)(7,38,23,46,15,30)(8,37,24,45,16,29), (1,5)(2,22)(3,15)(4,8)(6,18)(7,11)(9,21)(10,14)(12,24)(13,17)(16,20)(19,23)(25,45)(26,38)(27,31)(28,48)(29,41)(30,34)(32,44)(33,37)(35,47)(36,40)(39,43)(42,46) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,44,17,28,9,36),(2,43,18,27,10,35),(3,42,19,26,11,34),(4,41,20,25,12,33),(5,40,21,48,13,32),(6,39,22,47,14,31),(7,38,23,46,15,30),(8,37,24,45,16,29)], [(1,5),(2,22),(3,15),(4,8),(6,18),(7,11),(9,21),(10,14),(12,24),(13,17),(16,20),(19,23),(25,45),(26,38),(27,31),(28,48),(29,41),(30,34),(32,44),(33,37),(35,47),(36,40),(39,43),(42,46)]])

36 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B3C4A4B6A6B6C6D6E6F6G8A8B8C8D12A12B12C12D24A···24H
order1222222233344666666688881212121224···24
size1199121212122242182242424242422181844444···4

36 irreducible representations

dim11111222222444444
type+++++++++++++++
imageC1C2C2C2C2S3D4D4D6D6D8S32S3×D4C2×S32S3×D8D6⋊D6C244D6
kernelC244D6C322D8C3×D24C8×C3⋊S3D6⋊D6D24C3⋊Dic3C2×C3⋊S3C24D12C3⋊S3C8C6C4C3C2C1
# reps12212211244121424

Matrix representation of C244D6 in GL6(𝔽73)

16570000
16160000
0072000
0007200
000001
00007272
,
14430000
43590000
0017200
001000
000010
00007272
,
100000
010000
0072000
0072100
000010
00007272

G:=sub<GL(6,GF(73))| [16,16,0,0,0,0,57,16,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,72,0,0,0,0,1,72],[14,43,0,0,0,0,43,59,0,0,0,0,0,0,1,1,0,0,0,0,72,0,0,0,0,0,0,0,1,72,0,0,0,0,0,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,72,0,0,0,0,0,1,0,0,0,0,0,0,1,72,0,0,0,0,0,72] >;

C244D6 in GAP, Magma, Sage, TeX

C_{24}\rtimes_4D_6
% in TeX

G:=Group("C24:4D6");
// GroupNames label

G:=SmallGroup(288,445);
// by ID

G=gap.SmallGroup(288,445);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,254,135,142,675,346,80,1356,9414]);
// Polycyclic

G:=Group<a,b,c|a^24=b^6=c^2=1,b*a*b^-1=a^-1,c*a*c=a^17,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽