Extensions 1→N→G→Q→1 with N=Q8×C3⋊S3 and Q=C2

Direct product G=N×Q with N=Q8×C3⋊S3 and Q=C2
dρLabelID
C2×Q8×C3⋊S3144C2xQ8xC3:S3288,1010

Semidirect products G=N:Q with N=Q8×C3⋊S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8×C3⋊S3)⋊1C2 = D12.9D6φ: C2/C1C2 ⊆ Out Q8×C3⋊S3488-(Q8xC3:S3):1C2288,588
(Q8×C3⋊S3)⋊2C2 = D12.15D6φ: C2/C1C2 ⊆ Out Q8×C3⋊S3488-(Q8xC3:S3):2C2288,599
(Q8×C3⋊S3)⋊3C2 = SD16×C3⋊S3φ: C2/C1C2 ⊆ Out Q8×C3⋊S372(Q8xC3:S3):3C2288,770
(Q8×C3⋊S3)⋊4C2 = C24.32D6φ: C2/C1C2 ⊆ Out Q8×C3⋊S3144(Q8xC3:S3):4C2288,772
(Q8×C3⋊S3)⋊5C2 = C24.35D6φ: C2/C1C2 ⊆ Out Q8×C3⋊S3144(Q8xC3:S3):5C2288,775
(Q8×C3⋊S3)⋊6C2 = D12.25D6φ: C2/C1C2 ⊆ Out Q8×C3⋊S3488-(Q8xC3:S3):6C2288,963
(Q8×C3⋊S3)⋊7C2 = S32×Q8φ: C2/C1C2 ⊆ Out Q8×C3⋊S3488-(Q8xC3:S3):7C2288,965
(Q8×C3⋊S3)⋊8C2 = D1215D6φ: C2/C1C2 ⊆ Out Q8×C3⋊S3488-(Q8xC3:S3):8C2288,967
(Q8×C3⋊S3)⋊9C2 = C3272- 1+4φ: C2/C1C2 ⊆ Out Q8×C3⋊S3144(Q8xC3:S3):9C2288,1012
(Q8×C3⋊S3)⋊10C2 = C3292- 1+4φ: C2/C1C2 ⊆ Out Q8×C3⋊S3144(Q8xC3:S3):10C2288,1015
(Q8×C3⋊S3)⋊11C2 = C4○D4×C3⋊S3φ: trivial image72(Q8xC3:S3):11C2288,1013

Non-split extensions G=N.Q with N=Q8×C3⋊S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8×C3⋊S3).1C2 = C3⋊S3.5Q16φ: C2/C1C2 ⊆ Out Q8×C3⋊S3488-(Q8xC3:S3).1C2288,432
(Q8×C3⋊S3).2C2 = Dic6.9D6φ: C2/C1C2 ⊆ Out Q8×C3⋊S3488-(Q8xC3:S3).2C2288,592
(Q8×C3⋊S3).3C2 = Q16×C3⋊S3φ: C2/C1C2 ⊆ Out Q8×C3⋊S3144(Q8xC3:S3).3C2288,774
(Q8×C3⋊S3).4C2 = Q8×C32⋊C4φ: C2/C1C2 ⊆ Out Q8×C3⋊S3488-(Q8xC3:S3).4C2288,938

׿
×
𝔽