Copied to
clipboard

G = Q16×C3⋊S3order 288 = 25·32

Direct product of Q16 and C3⋊S3

direct product, metabelian, supersoluble, monomial

Aliases: Q16×C3⋊S3, C24.27D6, C34(S3×Q16), (C3×Q16)⋊2S3, C6.125(S3×D4), (C3×Q8).38D6, C3212(C2×Q16), C325Q169C2, C3⋊Dic3.50D4, (C32×Q16)⋊5C2, C327Q167C2, C12.94(C22×S3), (C3×C12).98C23, (C3×C24).30C22, C324C8.28C22, (Q8×C32).18C22, C324Q8.19C22, C8.9(C2×C3⋊S3), (C8×C3⋊S3).2C2, C2.22(D4×C3⋊S3), (Q8×C3⋊S3).3C2, Q8.8(C2×C3⋊S3), (C2×C3⋊S3).74D4, C4.8(C22×C3⋊S3), (C3×C6).246(C2×D4), (C4×C3⋊S3).74C22, SmallGroup(288,774)

Series: Derived Chief Lower central Upper central

C1C3×C12 — Q16×C3⋊S3
C1C3C32C3×C6C3×C12C4×C3⋊S3Q8×C3⋊S3 — Q16×C3⋊S3
C32C3×C6C3×C12 — Q16×C3⋊S3
C1C2C4Q16

Generators and relations for Q16×C3⋊S3
 G = < a,b,c,d,e | a8=c3=d3=e2=1, b2=a4, bab-1=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ece=c-1, ede=d-1 >

Subgroups: 660 in 180 conjugacy classes, 57 normal (17 characteristic)
C1, C2, C2, C3, C4, C4, C22, S3, C6, C8, C8, C2×C4, Q8, Q8, C32, Dic3, C12, C12, D6, C2×C8, Q16, Q16, C2×Q8, C3⋊S3, C3×C6, C3⋊C8, C24, Dic6, C4×S3, C3×Q8, C2×Q16, C3⋊Dic3, C3⋊Dic3, C3×C12, C3×C12, C2×C3⋊S3, S3×C8, Dic12, C3⋊Q16, C3×Q16, S3×Q8, C324C8, C3×C24, C324Q8, C324Q8, C4×C3⋊S3, C4×C3⋊S3, Q8×C32, S3×Q16, C8×C3⋊S3, C325Q16, C327Q16, C32×Q16, Q8×C3⋊S3, Q16×C3⋊S3
Quotients: C1, C2, C22, S3, D4, C23, D6, Q16, C2×D4, C3⋊S3, C22×S3, C2×Q16, C2×C3⋊S3, S3×D4, C22×C3⋊S3, S3×Q16, D4×C3⋊S3, Q16×C3⋊S3

Smallest permutation representation of Q16×C3⋊S3
On 144 points
Generators in S144
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104)(105 106 107 108 109 110 111 112)(113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128)(129 130 131 132 133 134 135 136)(137 138 139 140 141 142 143 144)
(1 61 5 57)(2 60 6 64)(3 59 7 63)(4 58 8 62)(9 66 13 70)(10 65 14 69)(11 72 15 68)(12 71 16 67)(17 49 21 53)(18 56 22 52)(19 55 23 51)(20 54 24 50)(25 141 29 137)(26 140 30 144)(27 139 31 143)(28 138 32 142)(33 92 37 96)(34 91 38 95)(35 90 39 94)(36 89 40 93)(41 129 45 133)(42 136 46 132)(43 135 47 131)(44 134 48 130)(73 115 77 119)(74 114 78 118)(75 113 79 117)(76 120 80 116)(81 105 85 109)(82 112 86 108)(83 111 87 107)(84 110 88 106)(97 127 101 123)(98 126 102 122)(99 125 103 121)(100 124 104 128)
(1 112 18)(2 105 19)(3 106 20)(4 107 21)(5 108 22)(6 109 23)(7 110 24)(8 111 17)(9 131 77)(10 132 78)(11 133 79)(12 134 80)(13 135 73)(14 136 74)(15 129 75)(16 130 76)(25 122 92)(26 123 93)(27 124 94)(28 125 95)(29 126 96)(30 127 89)(31 128 90)(32 121 91)(33 137 102)(34 138 103)(35 139 104)(36 140 97)(37 141 98)(38 142 99)(39 143 100)(40 144 101)(41 117 72)(42 118 65)(43 119 66)(44 120 67)(45 113 68)(46 114 69)(47 115 70)(48 116 71)(49 62 87)(50 63 88)(51 64 81)(52 57 82)(53 58 83)(54 59 84)(55 60 85)(56 61 86)
(1 119 25)(2 120 26)(3 113 27)(4 114 28)(5 115 29)(6 116 30)(7 117 31)(8 118 32)(9 102 82)(10 103 83)(11 104 84)(12 97 85)(13 98 86)(14 99 87)(15 100 88)(16 101 81)(17 42 91)(18 43 92)(19 44 93)(20 45 94)(21 46 95)(22 47 96)(23 48 89)(24 41 90)(33 52 131)(34 53 132)(35 54 133)(36 55 134)(37 56 135)(38 49 136)(39 50 129)(40 51 130)(57 77 137)(58 78 138)(59 79 139)(60 80 140)(61 73 141)(62 74 142)(63 75 143)(64 76 144)(65 121 111)(66 122 112)(67 123 105)(68 124 106)(69 125 107)(70 126 108)(71 127 109)(72 128 110)
(1 5)(2 6)(3 7)(4 8)(9 37)(10 38)(11 39)(12 40)(13 33)(14 34)(15 35)(16 36)(17 107)(18 108)(19 109)(20 110)(21 111)(22 112)(23 105)(24 106)(25 115)(26 116)(27 117)(28 118)(29 119)(30 120)(31 113)(32 114)(41 124)(42 125)(43 126)(44 127)(45 128)(46 121)(47 122)(48 123)(49 83)(50 84)(51 85)(52 86)(53 87)(54 88)(55 81)(56 82)(57 61)(58 62)(59 63)(60 64)(65 95)(66 96)(67 89)(68 90)(69 91)(70 92)(71 93)(72 94)(73 137)(74 138)(75 139)(76 140)(77 141)(78 142)(79 143)(80 144)(97 130)(98 131)(99 132)(100 133)(101 134)(102 135)(103 136)(104 129)

G:=sub<Sym(144)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (1,61,5,57)(2,60,6,64)(3,59,7,63)(4,58,8,62)(9,66,13,70)(10,65,14,69)(11,72,15,68)(12,71,16,67)(17,49,21,53)(18,56,22,52)(19,55,23,51)(20,54,24,50)(25,141,29,137)(26,140,30,144)(27,139,31,143)(28,138,32,142)(33,92,37,96)(34,91,38,95)(35,90,39,94)(36,89,40,93)(41,129,45,133)(42,136,46,132)(43,135,47,131)(44,134,48,130)(73,115,77,119)(74,114,78,118)(75,113,79,117)(76,120,80,116)(81,105,85,109)(82,112,86,108)(83,111,87,107)(84,110,88,106)(97,127,101,123)(98,126,102,122)(99,125,103,121)(100,124,104,128), (1,112,18)(2,105,19)(3,106,20)(4,107,21)(5,108,22)(6,109,23)(7,110,24)(8,111,17)(9,131,77)(10,132,78)(11,133,79)(12,134,80)(13,135,73)(14,136,74)(15,129,75)(16,130,76)(25,122,92)(26,123,93)(27,124,94)(28,125,95)(29,126,96)(30,127,89)(31,128,90)(32,121,91)(33,137,102)(34,138,103)(35,139,104)(36,140,97)(37,141,98)(38,142,99)(39,143,100)(40,144,101)(41,117,72)(42,118,65)(43,119,66)(44,120,67)(45,113,68)(46,114,69)(47,115,70)(48,116,71)(49,62,87)(50,63,88)(51,64,81)(52,57,82)(53,58,83)(54,59,84)(55,60,85)(56,61,86), (1,119,25)(2,120,26)(3,113,27)(4,114,28)(5,115,29)(6,116,30)(7,117,31)(8,118,32)(9,102,82)(10,103,83)(11,104,84)(12,97,85)(13,98,86)(14,99,87)(15,100,88)(16,101,81)(17,42,91)(18,43,92)(19,44,93)(20,45,94)(21,46,95)(22,47,96)(23,48,89)(24,41,90)(33,52,131)(34,53,132)(35,54,133)(36,55,134)(37,56,135)(38,49,136)(39,50,129)(40,51,130)(57,77,137)(58,78,138)(59,79,139)(60,80,140)(61,73,141)(62,74,142)(63,75,143)(64,76,144)(65,121,111)(66,122,112)(67,123,105)(68,124,106)(69,125,107)(70,126,108)(71,127,109)(72,128,110), (1,5)(2,6)(3,7)(4,8)(9,37)(10,38)(11,39)(12,40)(13,33)(14,34)(15,35)(16,36)(17,107)(18,108)(19,109)(20,110)(21,111)(22,112)(23,105)(24,106)(25,115)(26,116)(27,117)(28,118)(29,119)(30,120)(31,113)(32,114)(41,124)(42,125)(43,126)(44,127)(45,128)(46,121)(47,122)(48,123)(49,83)(50,84)(51,85)(52,86)(53,87)(54,88)(55,81)(56,82)(57,61)(58,62)(59,63)(60,64)(65,95)(66,96)(67,89)(68,90)(69,91)(70,92)(71,93)(72,94)(73,137)(74,138)(75,139)(76,140)(77,141)(78,142)(79,143)(80,144)(97,130)(98,131)(99,132)(100,133)(101,134)(102,135)(103,136)(104,129)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104)(105,106,107,108,109,110,111,112)(113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128)(129,130,131,132,133,134,135,136)(137,138,139,140,141,142,143,144), (1,61,5,57)(2,60,6,64)(3,59,7,63)(4,58,8,62)(9,66,13,70)(10,65,14,69)(11,72,15,68)(12,71,16,67)(17,49,21,53)(18,56,22,52)(19,55,23,51)(20,54,24,50)(25,141,29,137)(26,140,30,144)(27,139,31,143)(28,138,32,142)(33,92,37,96)(34,91,38,95)(35,90,39,94)(36,89,40,93)(41,129,45,133)(42,136,46,132)(43,135,47,131)(44,134,48,130)(73,115,77,119)(74,114,78,118)(75,113,79,117)(76,120,80,116)(81,105,85,109)(82,112,86,108)(83,111,87,107)(84,110,88,106)(97,127,101,123)(98,126,102,122)(99,125,103,121)(100,124,104,128), (1,112,18)(2,105,19)(3,106,20)(4,107,21)(5,108,22)(6,109,23)(7,110,24)(8,111,17)(9,131,77)(10,132,78)(11,133,79)(12,134,80)(13,135,73)(14,136,74)(15,129,75)(16,130,76)(25,122,92)(26,123,93)(27,124,94)(28,125,95)(29,126,96)(30,127,89)(31,128,90)(32,121,91)(33,137,102)(34,138,103)(35,139,104)(36,140,97)(37,141,98)(38,142,99)(39,143,100)(40,144,101)(41,117,72)(42,118,65)(43,119,66)(44,120,67)(45,113,68)(46,114,69)(47,115,70)(48,116,71)(49,62,87)(50,63,88)(51,64,81)(52,57,82)(53,58,83)(54,59,84)(55,60,85)(56,61,86), (1,119,25)(2,120,26)(3,113,27)(4,114,28)(5,115,29)(6,116,30)(7,117,31)(8,118,32)(9,102,82)(10,103,83)(11,104,84)(12,97,85)(13,98,86)(14,99,87)(15,100,88)(16,101,81)(17,42,91)(18,43,92)(19,44,93)(20,45,94)(21,46,95)(22,47,96)(23,48,89)(24,41,90)(33,52,131)(34,53,132)(35,54,133)(36,55,134)(37,56,135)(38,49,136)(39,50,129)(40,51,130)(57,77,137)(58,78,138)(59,79,139)(60,80,140)(61,73,141)(62,74,142)(63,75,143)(64,76,144)(65,121,111)(66,122,112)(67,123,105)(68,124,106)(69,125,107)(70,126,108)(71,127,109)(72,128,110), (1,5)(2,6)(3,7)(4,8)(9,37)(10,38)(11,39)(12,40)(13,33)(14,34)(15,35)(16,36)(17,107)(18,108)(19,109)(20,110)(21,111)(22,112)(23,105)(24,106)(25,115)(26,116)(27,117)(28,118)(29,119)(30,120)(31,113)(32,114)(41,124)(42,125)(43,126)(44,127)(45,128)(46,121)(47,122)(48,123)(49,83)(50,84)(51,85)(52,86)(53,87)(54,88)(55,81)(56,82)(57,61)(58,62)(59,63)(60,64)(65,95)(66,96)(67,89)(68,90)(69,91)(70,92)(71,93)(72,94)(73,137)(74,138)(75,139)(76,140)(77,141)(78,142)(79,143)(80,144)(97,130)(98,131)(99,132)(100,133)(101,134)(102,135)(103,136)(104,129) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104),(105,106,107,108,109,110,111,112),(113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128),(129,130,131,132,133,134,135,136),(137,138,139,140,141,142,143,144)], [(1,61,5,57),(2,60,6,64),(3,59,7,63),(4,58,8,62),(9,66,13,70),(10,65,14,69),(11,72,15,68),(12,71,16,67),(17,49,21,53),(18,56,22,52),(19,55,23,51),(20,54,24,50),(25,141,29,137),(26,140,30,144),(27,139,31,143),(28,138,32,142),(33,92,37,96),(34,91,38,95),(35,90,39,94),(36,89,40,93),(41,129,45,133),(42,136,46,132),(43,135,47,131),(44,134,48,130),(73,115,77,119),(74,114,78,118),(75,113,79,117),(76,120,80,116),(81,105,85,109),(82,112,86,108),(83,111,87,107),(84,110,88,106),(97,127,101,123),(98,126,102,122),(99,125,103,121),(100,124,104,128)], [(1,112,18),(2,105,19),(3,106,20),(4,107,21),(5,108,22),(6,109,23),(7,110,24),(8,111,17),(9,131,77),(10,132,78),(11,133,79),(12,134,80),(13,135,73),(14,136,74),(15,129,75),(16,130,76),(25,122,92),(26,123,93),(27,124,94),(28,125,95),(29,126,96),(30,127,89),(31,128,90),(32,121,91),(33,137,102),(34,138,103),(35,139,104),(36,140,97),(37,141,98),(38,142,99),(39,143,100),(40,144,101),(41,117,72),(42,118,65),(43,119,66),(44,120,67),(45,113,68),(46,114,69),(47,115,70),(48,116,71),(49,62,87),(50,63,88),(51,64,81),(52,57,82),(53,58,83),(54,59,84),(55,60,85),(56,61,86)], [(1,119,25),(2,120,26),(3,113,27),(4,114,28),(5,115,29),(6,116,30),(7,117,31),(8,118,32),(9,102,82),(10,103,83),(11,104,84),(12,97,85),(13,98,86),(14,99,87),(15,100,88),(16,101,81),(17,42,91),(18,43,92),(19,44,93),(20,45,94),(21,46,95),(22,47,96),(23,48,89),(24,41,90),(33,52,131),(34,53,132),(35,54,133),(36,55,134),(37,56,135),(38,49,136),(39,50,129),(40,51,130),(57,77,137),(58,78,138),(59,79,139),(60,80,140),(61,73,141),(62,74,142),(63,75,143),(64,76,144),(65,121,111),(66,122,112),(67,123,105),(68,124,106),(69,125,107),(70,126,108),(71,127,109),(72,128,110)], [(1,5),(2,6),(3,7),(4,8),(9,37),(10,38),(11,39),(12,40),(13,33),(14,34),(15,35),(16,36),(17,107),(18,108),(19,109),(20,110),(21,111),(22,112),(23,105),(24,106),(25,115),(26,116),(27,117),(28,118),(29,119),(30,120),(31,113),(32,114),(41,124),(42,125),(43,126),(44,127),(45,128),(46,121),(47,122),(48,123),(49,83),(50,84),(51,85),(52,86),(53,87),(54,88),(55,81),(56,82),(57,61),(58,62),(59,63),(60,64),(65,95),(66,96),(67,89),(68,90),(69,91),(70,92),(71,93),(72,94),(73,137),(74,138),(75,139),(76,140),(77,141),(78,142),(79,143),(80,144),(97,130),(98,131),(99,132),(100,133),(101,134),(102,135),(103,136),(104,129)]])

42 conjugacy classes

class 1 2A2B2C3A3B3C3D4A4B4C4D4E4F6A6B6C6D8A8B8C8D12A12B12C12D12E···12L24A···24H
order12223333444444666688881212121212···1224···24
size11992222244183636222222181844448···84···4

42 irreducible representations

dim11111122222244
type+++++++++++-+-
imageC1C2C2C2C2C2S3D4D4D6D6Q16S3×D4S3×Q16
kernelQ16×C3⋊S3C8×C3⋊S3C325Q16C327Q16C32×Q16Q8×C3⋊S3C3×Q16C3⋊Dic3C2×C3⋊S3C24C3×Q8C3⋊S3C6C3
# reps11121241148448

Matrix representation of Q16×C3⋊S3 in GL6(𝔽73)

100000
010000
001000
000100
0000035
00002532
,
7200000
0720000
001000
000100
00006843
0000695
,
010000
72720000
001000
000100
000010
000001
,
100000
010000
00727200
001000
000010
000001
,
100000
72720000
001000
00727200
0000720
0000072

G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,25,0,0,0,0,35,32],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,68,69,0,0,0,0,43,5],[0,72,0,0,0,0,1,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,1,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,72,0,0,0,0,0,72,0,0,0,0,0,0,1,72,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72] >;

Q16×C3⋊S3 in GAP, Magma, Sage, TeX

Q_{16}\times C_3\rtimes S_3
% in TeX

G:=Group("Q16xC3:S3");
// GroupNames label

G:=SmallGroup(288,774);
// by ID

G=gap.SmallGroup(288,774);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,120,135,100,346,185,80,2693,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^8=c^3=d^3=e^2=1,b^2=a^4,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e=c^-1,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽