Extensions 1→N→G→Q→1 with N=C4 and Q=C2xDic9

Direct product G=NxQ with N=C4 and Q=C2xDic9
dρLabelID
C2xC4xDic9288C2xC4xDic9288,132

Semidirect products G=N:Q with N=C4 and Q=C2xDic9
extensionφ:Q→Aut NdρLabelID
C4:1(C2xDic9) = D4xDic9φ: C2xDic9/Dic9C2 ⊆ Aut C4144C4:1(C2xDic9)288,144
C4:2(C2xDic9) = C2xC4:Dic9φ: C2xDic9/C2xC18C2 ⊆ Aut C4288C4:2(C2xDic9)288,135

Non-split extensions G=N.Q with N=C4 and Q=C2xDic9
extensionφ:Q→Aut NdρLabelID
C4.1(C2xDic9) = D4:Dic9φ: C2xDic9/Dic9C2 ⊆ Aut C4144C4.1(C2xDic9)288,40
C4.2(C2xDic9) = Q8:2Dic9φ: C2xDic9/Dic9C2 ⊆ Aut C4288C4.2(C2xDic9)288,43
C4.3(C2xDic9) = Q8:3Dic9φ: C2xDic9/Dic9C2 ⊆ Aut C4724C4.3(C2xDic9)288,44
C4.4(C2xDic9) = Q8xDic9φ: C2xDic9/Dic9C2 ⊆ Aut C4288C4.4(C2xDic9)288,155
C4.5(C2xDic9) = D4.Dic9φ: C2xDic9/Dic9C2 ⊆ Aut C41444C4.5(C2xDic9)288,158
C4.6(C2xDic9) = C72.C4φ: C2xDic9/C2xC18C2 ⊆ Aut C41442C4.6(C2xDic9)288,20
C4.7(C2xDic9) = C8:Dic9φ: C2xDic9/C2xC18C2 ⊆ Aut C4288C4.7(C2xDic9)288,25
C4.8(C2xDic9) = C72:1C4φ: C2xDic9/C2xC18C2 ⊆ Aut C4288C4.8(C2xDic9)288,26
C4.9(C2xDic9) = C2xC9:C16central extension (φ=1)288C4.9(C2xDic9)288,18
C4.10(C2xDic9) = C36.C8central extension (φ=1)1442C4.10(C2xDic9)288,19
C4.11(C2xDic9) = C8xDic9central extension (φ=1)288C4.11(C2xDic9)288,21
C4.12(C2xDic9) = C72:C4central extension (φ=1)288C4.12(C2xDic9)288,23
C4.13(C2xDic9) = C22xC9:C8central extension (φ=1)288C4.13(C2xDic9)288,130
C4.14(C2xDic9) = C2xC4.Dic9central extension (φ=1)144C4.14(C2xDic9)288,131
C4.15(C2xDic9) = C23.26D18central extension (φ=1)144C4.15(C2xDic9)288,136

׿
x
:
Z
F
o
wr
Q
<