Extensions 1→N→G→Q→1 with N=C4 and Q=C2×Dic9

Direct product G=N×Q with N=C4 and Q=C2×Dic9
dρLabelID
C2×C4×Dic9288C2xC4xDic9288,132

Semidirect products G=N:Q with N=C4 and Q=C2×Dic9
extensionφ:Q→Aut NdρLabelID
C41(C2×Dic9) = D4×Dic9φ: C2×Dic9/Dic9C2 ⊆ Aut C4144C4:1(C2xDic9)288,144
C42(C2×Dic9) = C2×C4⋊Dic9φ: C2×Dic9/C2×C18C2 ⊆ Aut C4288C4:2(C2xDic9)288,135

Non-split extensions G=N.Q with N=C4 and Q=C2×Dic9
extensionφ:Q→Aut NdρLabelID
C4.1(C2×Dic9) = D4⋊Dic9φ: C2×Dic9/Dic9C2 ⊆ Aut C4144C4.1(C2xDic9)288,40
C4.2(C2×Dic9) = Q82Dic9φ: C2×Dic9/Dic9C2 ⊆ Aut C4288C4.2(C2xDic9)288,43
C4.3(C2×Dic9) = Q83Dic9φ: C2×Dic9/Dic9C2 ⊆ Aut C4724C4.3(C2xDic9)288,44
C4.4(C2×Dic9) = Q8×Dic9φ: C2×Dic9/Dic9C2 ⊆ Aut C4288C4.4(C2xDic9)288,155
C4.5(C2×Dic9) = D4.Dic9φ: C2×Dic9/Dic9C2 ⊆ Aut C41444C4.5(C2xDic9)288,158
C4.6(C2×Dic9) = C72.C4φ: C2×Dic9/C2×C18C2 ⊆ Aut C41442C4.6(C2xDic9)288,20
C4.7(C2×Dic9) = C8⋊Dic9φ: C2×Dic9/C2×C18C2 ⊆ Aut C4288C4.7(C2xDic9)288,25
C4.8(C2×Dic9) = C721C4φ: C2×Dic9/C2×C18C2 ⊆ Aut C4288C4.8(C2xDic9)288,26
C4.9(C2×Dic9) = C2×C9⋊C16central extension (φ=1)288C4.9(C2xDic9)288,18
C4.10(C2×Dic9) = C36.C8central extension (φ=1)1442C4.10(C2xDic9)288,19
C4.11(C2×Dic9) = C8×Dic9central extension (φ=1)288C4.11(C2xDic9)288,21
C4.12(C2×Dic9) = C72⋊C4central extension (φ=1)288C4.12(C2xDic9)288,23
C4.13(C2×Dic9) = C22×C9⋊C8central extension (φ=1)288C4.13(C2xDic9)288,130
C4.14(C2×Dic9) = C2×C4.Dic9central extension (φ=1)144C4.14(C2xDic9)288,131
C4.15(C2×Dic9) = C23.26D18central extension (φ=1)144C4.15(C2xDic9)288,136

׿
×
𝔽