Extensions 1→N→G→Q→1 with N=C3×D4.S3 and Q=C2

Direct product G=N×Q with N=C3×D4.S3 and Q=C2
dρLabelID
C6×D4.S348C6xD4.S3288,704

Semidirect products G=N:Q with N=C3×D4.S3 and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×D4.S3)⋊1C2 = Dic6.19D6φ: C2/C1C2 ⊆ Out C3×D4.S3488-(C3xD4.S3):1C2288,577
(C3×D4.S3)⋊2C2 = Dic6.D6φ: C2/C1C2 ⊆ Out C3×D4.S3488-(C3xD4.S3):2C2288,579
(C3×D4.S3)⋊3C2 = D12.7D6φ: C2/C1C2 ⊆ Out C3×D4.S3488+(C3xD4.S3):3C2288,582
(C3×D4.S3)⋊4C2 = D125D6φ: C2/C1C2 ⊆ Out C3×D4.S3248+(C3xD4.S3):4C2288,585
(C3×D4.S3)⋊5C2 = S3×D4.S3φ: C2/C1C2 ⊆ Out C3×D4.S3488-(C3xD4.S3):5C2288,576
(C3×D4.S3)⋊6C2 = Dic6⋊D6φ: C2/C1C2 ⊆ Out C3×D4.S3248+(C3xD4.S3):6C2288,578
(C3×D4.S3)⋊7C2 = Dic6.20D6φ: C2/C1C2 ⊆ Out C3×D4.S3488+(C3xD4.S3):7C2288,583
(C3×D4.S3)⋊8C2 = D12.8D6φ: C2/C1C2 ⊆ Out C3×D4.S3488-(C3xD4.S3):8C2288,584
(C3×D4.S3)⋊9C2 = C3×D8⋊S3φ: C2/C1C2 ⊆ Out C3×D4.S3484(C3xD4.S3):9C2288,682
(C3×D4.S3)⋊10C2 = C3×D4.D6φ: C2/C1C2 ⊆ Out C3×D4.S3484(C3xD4.S3):10C2288,686
(C3×D4.S3)⋊11C2 = C3×D126C22φ: C2/C1C2 ⊆ Out C3×D4.S3244(C3xD4.S3):11C2288,703
(C3×D4.S3)⋊12C2 = C3×Q8.14D6φ: C2/C1C2 ⊆ Out C3×D4.S3484(C3xD4.S3):12C2288,722
(C3×D4.S3)⋊13C2 = C3×D83S3φ: C2/C1C2 ⊆ Out C3×D4.S3484(C3xD4.S3):13C2288,683
(C3×D4.S3)⋊14C2 = C3×S3×SD16φ: C2/C1C2 ⊆ Out C3×D4.S3484(C3xD4.S3):14C2288,684
(C3×D4.S3)⋊15C2 = C3×Q8.13D6φ: trivial image484(C3xD4.S3):15C2288,721


׿
×
𝔽