Copied to
clipboard

G = Dic6⋊D6order 288 = 25·32

4th semidirect product of Dic6 and D6 acting via D6/C3=C22

metabelian, supersoluble, monomial

Aliases: Dic64D6, C3⋊C815D6, D4.7S32, D4.S32S3, C3⋊S34SD16, (C3×D4).9D6, C33(S3×SD16), C6.57(S3×D4), C3⋊Dic3.20D4, (C3×C12).7C23, C12.7(C22×S3), C3210(C2×SD16), Dic3.D63C2, C12.29D64C2, (C3×Dic6)⋊7C22, C325SD1611C2, C2.17(Dic3⋊D6), C12⋊S3.7C22, (D4×C32).3C22, C4.7(C2×S32), (D4×C3⋊S3).2C2, (C3×C3⋊C8)⋊15C22, (C3×D4.S3)⋊6C2, (C2×C3⋊S3).57D4, (C3×C6).122(C2×D4), (C4×C3⋊S3).13C22, SmallGroup(288,578)

Series: Derived Chief Lower central Upper central

C1C3×C12 — Dic6⋊D6
C1C3C32C3×C6C3×C12C3×Dic6Dic3.D6 — Dic6⋊D6
C32C3×C6C3×C12 — Dic6⋊D6
C1C2C4D4

Generators and relations for Dic6⋊D6
 G = < a,b,c,d | a12=c6=d2=1, b2=a6, bab-1=dad=a-1, cac-1=a7, cbc-1=dbd=a9b, dcd=c-1 >

Subgroups: 834 in 163 conjugacy classes, 40 normal (16 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, C2×C4, D4, D4, Q8, C23, C32, Dic3, C12, C12, D6, C2×C6, C2×C8, SD16, C2×D4, C2×Q8, C3⋊S3, C3⋊S3, C3×C6, C3×C6, C3⋊C8, C24, Dic6, Dic6, C4×S3, D12, C3⋊D4, C3×D4, C3×D4, C3×Q8, C22×S3, C2×SD16, C3×Dic3, C3⋊Dic3, C3×C12, C2×C3⋊S3, C2×C3⋊S3, C62, S3×C8, C24⋊C2, D4.S3, Q82S3, C3×SD16, S3×D4, S3×Q8, C3×C3⋊C8, C6.D6, C322Q8, C3×Dic6, C4×C3⋊S3, C12⋊S3, C327D4, D4×C32, C22×C3⋊S3, S3×SD16, C12.29D6, C325SD16, C3×D4.S3, Dic3.D6, D4×C3⋊S3, Dic6⋊D6
Quotients: C1, C2, C22, S3, D4, C23, D6, SD16, C2×D4, C22×S3, C2×SD16, S32, S3×D4, C2×S32, S3×SD16, Dic3⋊D6, Dic6⋊D6

Permutation representations of Dic6⋊D6
On 24 points - transitive group 24T670
Generators in S24
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)
(1 13 7 19)(2 24 8 18)(3 23 9 17)(4 22 10 16)(5 21 11 15)(6 20 12 14)
(1 5 9)(2 12 10 8 6 4)(3 7 11)(13 24 17 16 21 20)(14 19 18 23 22 15)
(1 3)(4 12)(5 11)(6 10)(7 9)(13 14)(15 24)(16 23)(17 22)(18 21)(19 20)

G:=sub<Sym(24)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,13,7,19)(2,24,8,18)(3,23,9,17)(4,22,10,16)(5,21,11,15)(6,20,12,14), (1,5,9)(2,12,10,8,6,4)(3,7,11)(13,24,17,16,21,20)(14,19,18,23,22,15), (1,3)(4,12)(5,11)(6,10)(7,9)(13,14)(15,24)(16,23)(17,22)(18,21)(19,20)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,13,7,19)(2,24,8,18)(3,23,9,17)(4,22,10,16)(5,21,11,15)(6,20,12,14), (1,5,9)(2,12,10,8,6,4)(3,7,11)(13,24,17,16,21,20)(14,19,18,23,22,15), (1,3)(4,12)(5,11)(6,10)(7,9)(13,14)(15,24)(16,23)(17,22)(18,21)(19,20) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24)], [(1,13,7,19),(2,24,8,18),(3,23,9,17),(4,22,10,16),(5,21,11,15),(6,20,12,14)], [(1,5,9),(2,12,10,8,6,4),(3,7,11),(13,24,17,16,21,20),(14,19,18,23,22,15)], [(1,3),(4,12),(5,11),(6,10),(7,9),(13,14),(15,24),(16,23),(17,22),(18,21),(19,20)]])

G:=TransitiveGroup(24,670);

33 conjugacy classes

class 1 2A2B2C2D2E3A3B3C4A4B4C4D6A6B6C6D6E6F6G8A8B8C8D12A12B12C12D12E24A24B24C24D
order122222333444466666668888121212121224242424
size1149936224212121822488886666448242412121212

33 irreducible representations

dim1111112222222444448
type+++++++++++++++++
imageC1C2C2C2C2C2S3D4D4D6D6D6SD16S32S3×D4C2×S32S3×SD16Dic3⋊D6Dic6⋊D6
kernelDic6⋊D6C12.29D6C325SD16C3×D4.S3Dic3.D6D4×C3⋊S3D4.S3C3⋊Dic3C2×C3⋊S3C3⋊C8Dic6C3×D4C3⋊S3D4C6C4C3C2C1
# reps1122112112224121421

Matrix representation of Dic6⋊D6 in GL6(𝔽73)

72480000
310000
001000
000100
0000072
0000172
,
1240000
55610000
0072000
0007200
000001
000010
,
100000
70720000
0017200
001000
000010
000001
,
7200000
310000
001000
0017200
000001
000010

G:=sub<GL(6,GF(73))| [72,3,0,0,0,0,48,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,72,72],[12,55,0,0,0,0,4,61,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[1,70,0,0,0,0,0,72,0,0,0,0,0,0,1,1,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[72,3,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

Dic6⋊D6 in GAP, Magma, Sage, TeX

{\rm Dic}_6\rtimes D_6
% in TeX

G:=Group("Dic6:D6");
// GroupNames label

G:=SmallGroup(288,578);
// by ID

G=gap.SmallGroup(288,578);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,112,120,254,135,675,346,185,80,1356,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^12=c^6=d^2=1,b^2=a^6,b*a*b^-1=d*a*d=a^-1,c*a*c^-1=a^7,c*b*c^-1=d*b*d=a^9*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽