Copied to
clipboard

G = Dic6.D6order 288 = 25·32

5th non-split extension by Dic6 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial

Aliases: Dic6.5D6, D4.8S32, C3⋊C8.6D6, D4.S33S3, C6.58(S3×D4), (C3×D4).10D6, C33(D4.D6), C3⋊Dic3.57D4, C12.8(C22×S3), (C3×C12).8C23, Dic3.D64C2, C12.31D63C2, C323Q1612C2, C2.18(Dic3⋊D6), C12.D6.2C2, C3210(C8.C22), (D4×C32).4C22, C324Q8.7C22, (C3×Dic6).11C22, C4.8(C2×S32), (C3×D4.S3)⋊2C2, (C2×C3⋊S3).22D4, (C3×C6).123(C2×D4), (C3×C3⋊C8).11C22, (C4×C3⋊S3).14C22, SmallGroup(288,579)

Series: Derived Chief Lower central Upper central

C1C3×C12 — Dic6.D6
C1C3C32C3×C6C3×C12C3×Dic6Dic3.D6 — Dic6.D6
C32C3×C6C3×C12 — Dic6.D6
C1C2C4D4

Generators and relations for Dic6.D6
 G = < a,b,c,d | a12=c6=1, b2=a6, d2=a3, bab-1=a-1, cac-1=a7, ad=da, cbc-1=a9b, dbd-1=a3b, dcd-1=a9c-1 >

Subgroups: 570 in 140 conjugacy classes, 38 normal (16 characteristic)
C1, C2, C2, C3, C3, C4, C4, C22, S3, C6, C6, C8, C2×C4, D4, D4, Q8, C32, Dic3, C12, C12, D6, C2×C6, M4(2), SD16, Q16, C2×Q8, C4○D4, C3⋊S3, C3×C6, C3×C6, C3⋊C8, C24, Dic6, Dic6, C4×S3, C2×Dic3, C3⋊D4, C3×D4, C3×D4, C3×Q8, C8.C22, C3×Dic3, C3⋊Dic3, C3⋊Dic3, C3×C12, C2×C3⋊S3, C62, C8⋊S3, Dic12, D4.S3, C3⋊Q16, C3×SD16, D42S3, S3×Q8, C3×C3⋊C8, C6.D6, C322Q8, C3×Dic6, C324Q8, C4×C3⋊S3, C2×C3⋊Dic3, C327D4, D4×C32, D4.D6, C12.31D6, C323Q16, C3×D4.S3, Dic3.D6, C12.D6, Dic6.D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C22×S3, C8.C22, S32, S3×D4, C2×S32, D4.D6, Dic3⋊D6, Dic6.D6

Character table of Dic6.D6

 class 12A2B2C3A3B3C4A4B4C4D4E6A6B6C6D6E6F6G8A8B12A12B12C12D12E24A24B24C24D
 size 1141822421212183622488881212448242412121212
ρ1111111111111111111111111111111    trivial
ρ211-1-111111-1-11111-1-1-1-11-11111-111-1-1    linear of order 2
ρ3111-11111-11-1-111111111-1111-1111-1-1    linear of order 2
ρ411-111111-1-11-1111-1-1-1-111111-1-11111    linear of order 2
ρ511-111111111-1111-1-1-1-1-1-111111-1-1-1-1    linear of order 2
ρ6111-111111-1-1-11111111-111111-1-1-111    linear of order 2
ρ711-1-11111-11-11111-1-1-1-1-11111-11-1-111    linear of order 2
ρ811111111-1-1111111111-1-1111-1-1-1-1-1-1    linear of order 2
ρ92202222-200-20222000000-2-2-2000000    orthogonal lifted from D4
ρ1022-202-1-1220002-1-111-210-22-1-1-100011    orthogonal lifted from D6
ρ112220-12-120-200-12-1-1-1-12-20-12-1011100    orthogonal lifted from D6
ρ1222-20-12-120200-12-1111-2-20-12-10-11100    orthogonal lifted from D6
ρ1322-202-1-12-20002-1-111-21022-1-11000-1-1    orthogonal lifted from D6
ρ1422-20-12-120-200-12-1111-220-12-101-1-100    orthogonal lifted from D6
ρ152220-12-120200-12-1-1-1-1220-12-10-1-1-100    orthogonal lifted from S3
ρ1622202-1-12-20002-1-1-1-12-10-22-1-1100011    orthogonal lifted from D6
ρ17220-2222-20020222000000-2-2-2000000    orthogonal lifted from D4
ρ1822202-1-1220002-1-1-1-12-1022-1-1-1000-1-1    orthogonal lifted from S3
ρ194400-2-21-40000-2-21-33000022-1000000    orthogonal lifted from Dic3⋊D6
ρ204400-2-21-40000-2-213-3000022-1000000    orthogonal lifted from Dic3⋊D6
ρ214440-2-2140000-2-2111-2-200-2-21000000    orthogonal lifted from S32
ρ2244-40-2-2140000-2-21-1-12200-2-21000000    orthogonal lifted from C2×S32
ρ234400-24-2-40000-24-20000002-42000000    orthogonal lifted from S3×D4
ρ2444004-2-2-400004-2-2000000-422000000    orthogonal lifted from S3×D4
ρ254-40044400000-4-4-4000000000000000    symplectic lifted from C8.C22, Schur index 2
ρ264-4004-2-200000-42200000000000006-6    symplectic lifted from D4.D6, Schur index 2
ρ274-4004-2-200000-4220000000000000-66    symplectic lifted from D4.D6, Schur index 2
ρ284-400-24-2000002-4200000000000-6600    symplectic lifted from D4.D6, Schur index 2
ρ294-400-24-2000002-42000000000006-600    symplectic lifted from D4.D6, Schur index 2
ρ308-800-4-420000044-2000000000000000    symplectic faithful, Schur index 2

Smallest permutation representation of Dic6.D6
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 32 7 26)(2 31 8 25)(3 30 9 36)(4 29 10 35)(5 28 11 34)(6 27 12 33)(13 45 19 39)(14 44 20 38)(15 43 21 37)(16 42 22 48)(17 41 23 47)(18 40 24 46)
(1 14 9 22 5 18)(2 21 10 17 6 13)(3 16 11 24 7 20)(4 23 12 19 8 15)(25 46 29 38 33 42)(26 41 30 45 34 37)(27 48 31 40 35 44)(28 43 32 47 36 39)
(1 37 4 40 7 43 10 46)(2 38 5 41 8 44 11 47)(3 39 6 42 9 45 12 48)(13 30 16 33 19 36 22 27)(14 31 17 34 20 25 23 28)(15 32 18 35 21 26 24 29)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,32,7,26)(2,31,8,25)(3,30,9,36)(4,29,10,35)(5,28,11,34)(6,27,12,33)(13,45,19,39)(14,44,20,38)(15,43,21,37)(16,42,22,48)(17,41,23,47)(18,40,24,46), (1,14,9,22,5,18)(2,21,10,17,6,13)(3,16,11,24,7,20)(4,23,12,19,8,15)(25,46,29,38,33,42)(26,41,30,45,34,37)(27,48,31,40,35,44)(28,43,32,47,36,39), (1,37,4,40,7,43,10,46)(2,38,5,41,8,44,11,47)(3,39,6,42,9,45,12,48)(13,30,16,33,19,36,22,27)(14,31,17,34,20,25,23,28)(15,32,18,35,21,26,24,29)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,32,7,26)(2,31,8,25)(3,30,9,36)(4,29,10,35)(5,28,11,34)(6,27,12,33)(13,45,19,39)(14,44,20,38)(15,43,21,37)(16,42,22,48)(17,41,23,47)(18,40,24,46), (1,14,9,22,5,18)(2,21,10,17,6,13)(3,16,11,24,7,20)(4,23,12,19,8,15)(25,46,29,38,33,42)(26,41,30,45,34,37)(27,48,31,40,35,44)(28,43,32,47,36,39), (1,37,4,40,7,43,10,46)(2,38,5,41,8,44,11,47)(3,39,6,42,9,45,12,48)(13,30,16,33,19,36,22,27)(14,31,17,34,20,25,23,28)(15,32,18,35,21,26,24,29) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,32,7,26),(2,31,8,25),(3,30,9,36),(4,29,10,35),(5,28,11,34),(6,27,12,33),(13,45,19,39),(14,44,20,38),(15,43,21,37),(16,42,22,48),(17,41,23,47),(18,40,24,46)], [(1,14,9,22,5,18),(2,21,10,17,6,13),(3,16,11,24,7,20),(4,23,12,19,8,15),(25,46,29,38,33,42),(26,41,30,45,34,37),(27,48,31,40,35,44),(28,43,32,47,36,39)], [(1,37,4,40,7,43,10,46),(2,38,5,41,8,44,11,47),(3,39,6,42,9,45,12,48),(13,30,16,33,19,36,22,27),(14,31,17,34,20,25,23,28),(15,32,18,35,21,26,24,29)]])

Matrix representation of Dic6.D6 in GL8(𝔽73)

172000000
10000000
6700720000
06110000
0000727222
000010710
0000727211
000010720
,
676771720000
007210000
3636600000
3637600000
0000670260
0000664747
00007060
000066666767
,
721000000
720000000
82110000
2697200000
000065574619
00001685427
00001530816
000043585765
,
66210000
66120000
242567670000
252467670000
00006863510
00001056368
0000346800
000053900

G:=sub<GL(8,GF(73))| [1,1,67,0,0,0,0,0,72,0,0,6,0,0,0,0,0,0,0,1,0,0,0,0,0,0,72,1,0,0,0,0,0,0,0,0,72,1,72,1,0,0,0,0,72,0,72,0,0,0,0,0,2,71,1,72,0,0,0,0,2,0,1,0],[67,0,36,36,0,0,0,0,67,0,36,37,0,0,0,0,71,72,6,6,0,0,0,0,72,1,0,0,0,0,0,0,0,0,0,0,67,6,7,66,0,0,0,0,0,6,0,66,0,0,0,0,26,47,6,67,0,0,0,0,0,47,0,67],[72,72,8,2,0,0,0,0,1,0,2,69,0,0,0,0,0,0,1,72,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,65,16,15,43,0,0,0,0,57,8,30,58,0,0,0,0,46,54,8,57,0,0,0,0,19,27,16,65],[6,6,24,25,0,0,0,0,6,6,25,24,0,0,0,0,2,1,67,67,0,0,0,0,1,2,67,67,0,0,0,0,0,0,0,0,68,10,34,5,0,0,0,0,63,5,68,39,0,0,0,0,5,63,0,0,0,0,0,0,10,68,0,0] >;

Dic6.D6 in GAP, Magma, Sage, TeX

{\rm Dic}_6.D_6
% in TeX

G:=Group("Dic6.D6");
// GroupNames label

G:=SmallGroup(288,579);
// by ID

G=gap.SmallGroup(288,579);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,112,120,254,303,675,346,185,80,1356,9414]);
// Polycyclic

G:=Group<a,b,c,d|a^12=c^6=1,b^2=a^6,d^2=a^3,b*a*b^-1=a^-1,c*a*c^-1=a^7,a*d=d*a,c*b*c^-1=a^9*b,d*b*d^-1=a^3*b,d*c*d^-1=a^9*c^-1>;
// generators/relations

Export

Character table of Dic6.D6 in TeX

׿
×
𝔽