Extensions 1→N→G→Q→1 with N=C3 and Q=C3×C4○D8

Direct product G=N×Q with N=C3 and Q=C3×C4○D8
dρLabelID
C32×C4○D8144C3^2xC4oD8288,832

Semidirect products G=N:Q with N=C3 and Q=C3×C4○D8
extensionφ:Q→Aut NdρLabelID
C31(C3×C4○D8) = C3×C4○D24φ: C3×C4○D8/C2×C24C2 ⊆ Aut C3482C3:1(C3xC4oD8)288,675
C32(C3×C4○D8) = C3×D83S3φ: C3×C4○D8/C3×D8C2 ⊆ Aut C3484C3:2(C3xC4oD8)288,683
C33(C3×C4○D8) = C3×Q8.7D6φ: C3×C4○D8/C3×SD16C2 ⊆ Aut C3484C3:3(C3xC4oD8)288,687
C34(C3×C4○D8) = C3×D24⋊C2φ: C3×C4○D8/C3×Q16C2 ⊆ Aut C3964C3:4(C3xC4oD8)288,690
C35(C3×C4○D8) = C3×Q8.13D6φ: C3×C4○D8/C3×C4○D4C2 ⊆ Aut C3484C3:5(C3xC4oD8)288,721

Non-split extensions G=N.Q with N=C3 and Q=C3×C4○D8
extensionφ:Q→Aut NdρLabelID
C3.(C3×C4○D8) = C9×C4○D8central extension (φ=1)1442C3.(C3xC4oD8)288,185

׿
×
𝔽