Extensions 1→N→G→Q→1 with N=C3 and Q=C4.Dic6

Direct product G=N×Q with N=C3 and Q=C4.Dic6

Semidirect products G=N:Q with N=C3 and Q=C4.Dic6
extensionφ:Q→Aut NdρLabelID
C31(C4.Dic6) = C62.39C23φ: C4.Dic6/C4×Dic3C2 ⊆ Aut C396C3:1(C4.Dic6)288,517
C32(C4.Dic6) = Dic3.Dic6φ: C4.Dic6/Dic3⋊C4C2 ⊆ Aut C396C3:2(C4.Dic6)288,493
C33(C4.Dic6) = C62.16C23φ: C4.Dic6/C4⋊Dic3C2 ⊆ Aut C396C3:3(C4.Dic6)288,494
C34(C4.Dic6) = C62.42C23φ: C4.Dic6/C4⋊Dic3C2 ⊆ Aut C396C3:4(C4.Dic6)288,520
C35(C4.Dic6) = C62.234C23φ: C4.Dic6/C3×C4⋊C4C2 ⊆ Aut C3288C3:5(C4.Dic6)288,747

Non-split extensions G=N.Q with N=C3 and Q=C4.Dic6
extensionφ:Q→Aut NdρLabelID
C3.(C4.Dic6) = C36.3Q8φ: C4.Dic6/C3×C4⋊C4C2 ⊆ Aut C3288C3.(C4.Dic6)288,100