metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C12.3Q8, C4.3Dic6, C4⋊C4.6S3, C6.6(C2×Q8), (C2×C4).43D6, C4⋊Dic3.7C2, C2.8(C2×Dic6), C3⋊3(C42.C2), C6.25(C4○D4), Dic3⋊C4.3C2, (C2×C6).31C23, (C4×Dic3).2C2, (C2×C12).22C22, C2.4(Q8⋊3S3), C2.12(D4⋊2S3), C22.48(C22×S3), (C2×Dic3).10C22, (C3×C4⋊C4).7C2, SmallGroup(96,97)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C4.Dic6
G = < a,b,c | a12=b4=1, c2=b2, bab-1=a7, cac-1=a5, cbc-1=a6b-1 >
Subgroups: 106 in 56 conjugacy classes, 33 normal (19 characteristic)
C1, C2 [×3], C3, C4 [×2], C4 [×6], C22, C6 [×3], C2×C4, C2×C4 [×2], C2×C4 [×4], Dic3 [×4], C12 [×2], C12 [×2], C2×C6, C42, C4⋊C4, C4⋊C4 [×5], C2×Dic3 [×2], C2×Dic3 [×2], C2×C12, C2×C12 [×2], C42.C2, C4×Dic3, Dic3⋊C4 [×2], C4⋊Dic3, C4⋊Dic3 [×2], C3×C4⋊C4, C4.Dic6
Quotients: C1, C2 [×7], C22 [×7], S3, Q8 [×2], C23, D6 [×3], C2×Q8, C4○D4 [×2], Dic6 [×2], C22×S3, C42.C2, C2×Dic6, D4⋊2S3, Q8⋊3S3, C4.Dic6
Character table of C4.Dic6
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 6A | 6B | 6C | 12A | 12B | 12C | 12D | 12E | 12F | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 6 | 6 | 6 | 6 | 12 | 12 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -1 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | orthogonal lifted from D6 |
ρ10 | 2 | 2 | 2 | 2 | -1 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ11 | 2 | 2 | 2 | 2 | -1 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ12 | 2 | 2 | 2 | 2 | -1 | -2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | orthogonal lifted from D6 |
ρ13 | 2 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | -2 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ14 | 2 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ15 | 2 | 2 | -2 | -2 | -1 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | 1 | √3 | -√3 | -1 | √3 | -√3 | symplectic lifted from Dic6, Schur index 2 |
ρ16 | 2 | 2 | -2 | -2 | -1 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | 1 | -√3 | √3 | -1 | -√3 | √3 | symplectic lifted from Dic6, Schur index 2 |
ρ17 | 2 | 2 | -2 | -2 | -1 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | √3 | √3 | 1 | -√3 | -√3 | symplectic lifted from Dic6, Schur index 2 |
ρ18 | 2 | 2 | -2 | -2 | -1 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | -1 | -√3 | -√3 | 1 | √3 | √3 | symplectic lifted from Dic6, Schur index 2 |
ρ19 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -2i | 0 | 2i | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ20 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -2i | 0 | 2i | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ21 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 2i | 0 | -2i | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ22 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 2i | 0 | -2i | 0 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ23 | 4 | -4 | -4 | 4 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from Q8⋊3S3, Schur index 2 |
ρ24 | 4 | -4 | 4 | -4 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from D4⋊2S3, Schur index 2 |
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 95 44 63)(2 90 45 70)(3 85 46 65)(4 92 47 72)(5 87 48 67)(6 94 37 62)(7 89 38 69)(8 96 39 64)(9 91 40 71)(10 86 41 66)(11 93 42 61)(12 88 43 68)(13 27 84 60)(14 34 73 55)(15 29 74 50)(16 36 75 57)(17 31 76 52)(18 26 77 59)(19 33 78 54)(20 28 79 49)(21 35 80 56)(22 30 81 51)(23 25 82 58)(24 32 83 53)
(1 81 44 22)(2 74 45 15)(3 79 46 20)(4 84 47 13)(5 77 48 18)(6 82 37 23)(7 75 38 16)(8 80 39 21)(9 73 40 14)(10 78 41 19)(11 83 42 24)(12 76 43 17)(25 68 58 88)(26 61 59 93)(27 66 60 86)(28 71 49 91)(29 64 50 96)(30 69 51 89)(31 62 52 94)(32 67 53 87)(33 72 54 92)(34 65 55 85)(35 70 56 90)(36 63 57 95)
G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,95,44,63)(2,90,45,70)(3,85,46,65)(4,92,47,72)(5,87,48,67)(6,94,37,62)(7,89,38,69)(8,96,39,64)(9,91,40,71)(10,86,41,66)(11,93,42,61)(12,88,43,68)(13,27,84,60)(14,34,73,55)(15,29,74,50)(16,36,75,57)(17,31,76,52)(18,26,77,59)(19,33,78,54)(20,28,79,49)(21,35,80,56)(22,30,81,51)(23,25,82,58)(24,32,83,53), (1,81,44,22)(2,74,45,15)(3,79,46,20)(4,84,47,13)(5,77,48,18)(6,82,37,23)(7,75,38,16)(8,80,39,21)(9,73,40,14)(10,78,41,19)(11,83,42,24)(12,76,43,17)(25,68,58,88)(26,61,59,93)(27,66,60,86)(28,71,49,91)(29,64,50,96)(30,69,51,89)(31,62,52,94)(32,67,53,87)(33,72,54,92)(34,65,55,85)(35,70,56,90)(36,63,57,95)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,95,44,63)(2,90,45,70)(3,85,46,65)(4,92,47,72)(5,87,48,67)(6,94,37,62)(7,89,38,69)(8,96,39,64)(9,91,40,71)(10,86,41,66)(11,93,42,61)(12,88,43,68)(13,27,84,60)(14,34,73,55)(15,29,74,50)(16,36,75,57)(17,31,76,52)(18,26,77,59)(19,33,78,54)(20,28,79,49)(21,35,80,56)(22,30,81,51)(23,25,82,58)(24,32,83,53), (1,81,44,22)(2,74,45,15)(3,79,46,20)(4,84,47,13)(5,77,48,18)(6,82,37,23)(7,75,38,16)(8,80,39,21)(9,73,40,14)(10,78,41,19)(11,83,42,24)(12,76,43,17)(25,68,58,88)(26,61,59,93)(27,66,60,86)(28,71,49,91)(29,64,50,96)(30,69,51,89)(31,62,52,94)(32,67,53,87)(33,72,54,92)(34,65,55,85)(35,70,56,90)(36,63,57,95) );
G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,95,44,63),(2,90,45,70),(3,85,46,65),(4,92,47,72),(5,87,48,67),(6,94,37,62),(7,89,38,69),(8,96,39,64),(9,91,40,71),(10,86,41,66),(11,93,42,61),(12,88,43,68),(13,27,84,60),(14,34,73,55),(15,29,74,50),(16,36,75,57),(17,31,76,52),(18,26,77,59),(19,33,78,54),(20,28,79,49),(21,35,80,56),(22,30,81,51),(23,25,82,58),(24,32,83,53)], [(1,81,44,22),(2,74,45,15),(3,79,46,20),(4,84,47,13),(5,77,48,18),(6,82,37,23),(7,75,38,16),(8,80,39,21),(9,73,40,14),(10,78,41,19),(11,83,42,24),(12,76,43,17),(25,68,58,88),(26,61,59,93),(27,66,60,86),(28,71,49,91),(29,64,50,96),(30,69,51,89),(31,62,52,94),(32,67,53,87),(33,72,54,92),(34,65,55,85),(35,70,56,90),(36,63,57,95)])
C4.Dic6 is a maximal subgroup of
D4.Dic6 C4⋊C4.D6 D4.2Dic6 (C2×C8).200D6 Q8.3Dic6 (C2×Q8).36D6 Q8.4Dic6 Q8⋊C4⋊S3 C24⋊3Q8 Dic6.Q8 C8.8Dic6 D12.Q8 C24⋊4Q8 Dic6.2Q8 C8.6Dic6 D12.2Q8 C6.72+ 1+4 C6.52- 1+4 C6.112+ 1+4 C42.88D6 C42.90D6 C42.94D6 C42.95D6 D4⋊5Dic6 D4⋊6Dic6 C42.229D6 C42.116D6 Q8⋊6Dic6 Q8⋊7Dic6 C42.131D6 C42.134D6 C4⋊C4.178D6 C6.432+ 1+4 C6.1152+ 1+4 C6.472+ 1+4 C4⋊C4.187D6 C6.152- 1+4 C6.212- 1+4 C6.772- 1+4 C6.782- 1+4 C6.252- 1+4 C6.802- 1+4 C6.632+ 1+4 C6.852- 1+4 C6.692+ 1+4 Dic6⋊7Q8 C42.147D6 S3×C42.C2 C42.148D6 D12⋊7Q8 C42.152D6 C42.154D6 C42.156D6 C42.159D6 C42.161D6 C42.162D6 C42.165D6 Dic6⋊8Q8 C42.241D6 C42.174D6 D12⋊9Q8 C36.3Q8 Dic3.Dic6 C62.16C23 C62.39C23 C62.42C23 C62.234C23 Dic5.1Dic6 Dic5.2Dic6 C60.6Q8 C12.Dic10 C4.Dic30
C4.Dic6 is a maximal quotient of
C2.(C4×Dic6) Dic3⋊C4⋊C4 (C2×C4).Dic6 (C22×C4).85D6 C12⋊(C4⋊C4) (C4×Dic3)⋊9C4 (C2×C12).54D4 C4⋊C4⋊6Dic3 (C2×C12).55D4 C36.3Q8 Dic3.Dic6 C62.16C23 C62.39C23 C62.42C23 C62.234C23 Dic5.1Dic6 Dic5.2Dic6 C60.6Q8 C12.Dic10 C4.Dic30
Matrix representation of C4.Dic6 ►in GL4(𝔽13) generated by
4 | 0 | 0 | 0 |
3 | 10 | 0 | 0 |
0 | 0 | 8 | 3 |
0 | 0 | 0 | 5 |
8 | 0 | 0 | 0 |
5 | 5 | 0 | 0 |
0 | 0 | 12 | 11 |
0 | 0 | 1 | 1 |
12 | 11 | 0 | 0 |
1 | 1 | 0 | 0 |
0 | 0 | 5 | 0 |
0 | 0 | 0 | 5 |
G:=sub<GL(4,GF(13))| [4,3,0,0,0,10,0,0,0,0,8,0,0,0,3,5],[8,5,0,0,0,5,0,0,0,0,12,1,0,0,11,1],[12,1,0,0,11,1,0,0,0,0,5,0,0,0,0,5] >;
C4.Dic6 in GAP, Magma, Sage, TeX
C_4.{\rm Dic}_6
% in TeX
G:=Group("C4.Dic6");
// GroupNames label
G:=SmallGroup(96,97);
// by ID
G=gap.SmallGroup(96,97);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,48,103,506,188,50,2309]);
// Polycyclic
G:=Group<a,b,c|a^12=b^4=1,c^2=b^2,b*a*b^-1=a^7,c*a*c^-1=a^5,c*b*c^-1=a^6*b^-1>;
// generators/relations
Export