Extensions 1→N→G→Q→1 with N=C22 and Q=D38

Direct product G=N×Q with N=C22 and Q=D38

Semidirect products G=N:Q with N=C22 and Q=D38
extensionφ:Q→Aut NdρLabelID
C221D38 = D4×D19φ: D38/D19C2 ⊆ Aut C22764+C2^2:1D38304,31
C222D38 = C2×C19⋊D4φ: D38/C38C2 ⊆ Aut C22152C2^2:2D38304,36

Non-split extensions G=N.Q with N=C22 and Q=D38
extensionφ:Q→Aut NdρLabelID
C22.1D38 = D42D19φ: D38/D19C2 ⊆ Aut C221524-C2^2.1D38304,32
C22.2D38 = D765C2φ: D38/C38C2 ⊆ Aut C221522C2^2.2D38304,30
C22.3D38 = C4×Dic19central extension (φ=1)304C2^2.3D38304,10
C22.4D38 = Dic19⋊C4central extension (φ=1)304C2^2.4D38304,11
C22.5D38 = C76⋊C4central extension (φ=1)304C2^2.5D38304,12
C22.6D38 = D38⋊C4central extension (φ=1)152C2^2.6D38304,13
C22.7D38 = C23.D19central extension (φ=1)152C2^2.7D38304,18
C22.8D38 = C2×Dic38central extension (φ=1)304C2^2.8D38304,27
C22.9D38 = C2×C4×D19central extension (φ=1)152C2^2.9D38304,28
C22.10D38 = C2×D76central extension (φ=1)152C2^2.10D38304,29
C22.11D38 = C22×Dic19central extension (φ=1)304C2^2.11D38304,35