metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C24.63D10, (C23×C4).5D5, (C22×C20)⋊21C4, (C23×C20).3C2, (C22×C4)⋊7Dic5, (C22×C10).192D4, (C22×C4).407D10, C5⋊4(C23.34D4), C23.82(C5⋊D4), C23.30(C2×Dic5), C22.62(C4○D20), (C23×C10).98C22, C23.302(C22×D5), C10.10C42⋊23C2, C10.67(C42⋊C2), (C22×C20).483C22, (C22×C10).362C23, C22.19(C23.D5), C22.49(C22×Dic5), C10.68(C22.D4), C2.4(C23.23D10), (C22×Dic5).65C22, C2.11(C23.21D10), (C2×C20).454(C2×C4), C2.5(C2×C23.D5), (C2×C10).548(C2×D4), (C2×C4).66(C2×Dic5), C22.86(C2×C5⋊D4), (C2×C10).90(C4○D4), C10.110(C2×C22⋊C4), (C2×C23.D5).17C2, (C22×C10).203(C2×C4), (C2×C10).293(C22×C4), (C2×C10).173(C22⋊C4), SmallGroup(320,838)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C24.63D10
G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e10=d, f2=bcd, ab=ba, ac=ca, faf-1=ad=da, ae=ea, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=ce9 >
Subgroups: 590 in 218 conjugacy classes, 87 normal (13 characteristic)
C1, C2, C2 [×6], C2 [×4], C4 [×8], C22, C22 [×10], C22 [×12], C5, C2×C4 [×4], C2×C4 [×24], C23, C23 [×6], C23 [×4], C10, C10 [×6], C10 [×4], C22⋊C4 [×4], C22×C4 [×6], C22×C4 [×8], C24, Dic5 [×4], C20 [×4], C2×C10, C2×C10 [×10], C2×C10 [×12], C2.C42 [×4], C2×C22⋊C4 [×2], C23×C4, C2×Dic5 [×12], C2×C20 [×4], C2×C20 [×12], C22×C10, C22×C10 [×6], C22×C10 [×4], C23.34D4, C23.D5 [×4], C22×Dic5 [×4], C22×C20 [×6], C22×C20 [×4], C23×C10, C10.10C42 [×4], C2×C23.D5 [×2], C23×C20, C24.63D10
Quotients: C1, C2 [×7], C4 [×4], C22 [×7], C2×C4 [×6], D4 [×4], C23, D5, C22⋊C4 [×4], C22×C4, C2×D4 [×2], C4○D4 [×4], Dic5 [×4], D10 [×3], C2×C22⋊C4, C42⋊C2 [×2], C22.D4 [×4], C2×Dic5 [×6], C5⋊D4 [×4], C22×D5, C23.34D4, C23.D5 [×4], C4○D20 [×4], C22×Dic5, C2×C5⋊D4 [×2], C23.21D10 [×2], C23.23D10 [×4], C2×C23.D5, C24.63D10
(1 112)(2 113)(3 114)(4 115)(5 116)(6 117)(7 118)(8 119)(9 120)(10 101)(11 102)(12 103)(13 104)(14 105)(15 106)(16 107)(17 108)(18 109)(19 110)(20 111)(21 41)(22 42)(23 43)(24 44)(25 45)(26 46)(27 47)(28 48)(29 49)(30 50)(31 51)(32 52)(33 53)(34 54)(35 55)(36 56)(37 57)(38 58)(39 59)(40 60)(61 100)(62 81)(63 82)(64 83)(65 84)(66 85)(67 86)(68 87)(69 88)(70 89)(71 90)(72 91)(73 92)(74 93)(75 94)(76 95)(77 96)(78 97)(79 98)(80 99)(121 150)(122 151)(123 152)(124 153)(125 154)(126 155)(127 156)(128 157)(129 158)(130 159)(131 160)(132 141)(133 142)(134 143)(135 144)(136 145)(137 146)(138 147)(139 148)(140 149)
(1 112)(2 113)(3 114)(4 115)(5 116)(6 117)(7 118)(8 119)(9 120)(10 101)(11 102)(12 103)(13 104)(14 105)(15 106)(16 107)(17 108)(18 109)(19 110)(20 111)(21 41)(22 42)(23 43)(24 44)(25 45)(26 46)(27 47)(28 48)(29 49)(30 50)(31 51)(32 52)(33 53)(34 54)(35 55)(36 56)(37 57)(38 58)(39 59)(40 60)(61 90)(62 91)(63 92)(64 93)(65 94)(66 95)(67 96)(68 97)(69 98)(70 99)(71 100)(72 81)(73 82)(74 83)(75 84)(76 85)(77 86)(78 87)(79 88)(80 89)(121 160)(122 141)(123 142)(124 143)(125 144)(126 145)(127 146)(128 147)(129 148)(130 149)(131 150)(132 151)(133 152)(134 153)(135 154)(136 155)(137 156)(138 157)(139 158)(140 159)
(1 58)(2 59)(3 60)(4 41)(5 42)(6 43)(7 44)(8 45)(9 46)(10 47)(11 48)(12 49)(13 50)(14 51)(15 52)(16 53)(17 54)(18 55)(19 56)(20 57)(21 115)(22 116)(23 117)(24 118)(25 119)(26 120)(27 101)(28 102)(29 103)(30 104)(31 105)(32 106)(33 107)(34 108)(35 109)(36 110)(37 111)(38 112)(39 113)(40 114)(61 160)(62 141)(63 142)(64 143)(65 144)(66 145)(67 146)(68 147)(69 148)(70 149)(71 150)(72 151)(73 152)(74 153)(75 154)(76 155)(77 156)(78 157)(79 158)(80 159)(81 132)(82 133)(83 134)(84 135)(85 136)(86 137)(87 138)(88 139)(89 140)(90 121)(91 122)(92 123)(93 124)(94 125)(95 126)(96 127)(97 128)(98 129)(99 130)(100 131)
(1 11)(2 12)(3 13)(4 14)(5 15)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)(41 51)(42 52)(43 53)(44 54)(45 55)(46 56)(47 57)(48 58)(49 59)(50 60)(61 71)(62 72)(63 73)(64 74)(65 75)(66 76)(67 77)(68 78)(69 79)(70 80)(81 91)(82 92)(83 93)(84 94)(85 95)(86 96)(87 97)(88 98)(89 99)(90 100)(101 111)(102 112)(103 113)(104 114)(105 115)(106 116)(107 117)(108 118)(109 119)(110 120)(121 131)(122 132)(123 133)(124 134)(125 135)(126 136)(127 137)(128 138)(129 139)(130 140)(141 151)(142 152)(143 153)(144 154)(145 155)(146 156)(147 157)(148 158)(149 159)(150 160)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 131 28 61)(2 89 29 149)(3 129 30 79)(4 87 31 147)(5 127 32 77)(6 85 33 145)(7 125 34 75)(8 83 35 143)(9 123 36 73)(10 81 37 141)(11 121 38 71)(12 99 39 159)(13 139 40 69)(14 97 21 157)(15 137 22 67)(16 95 23 155)(17 135 24 65)(18 93 25 153)(19 133 26 63)(20 91 27 151)(41 138 105 68)(42 96 106 156)(43 136 107 66)(44 94 108 154)(45 134 109 64)(46 92 110 152)(47 132 111 62)(48 90 112 150)(49 130 113 80)(50 88 114 148)(51 128 115 78)(52 86 116 146)(53 126 117 76)(54 84 118 144)(55 124 119 74)(56 82 120 142)(57 122 101 72)(58 100 102 160)(59 140 103 70)(60 98 104 158)
G:=sub<Sym(160)| (1,112)(2,113)(3,114)(4,115)(5,116)(6,117)(7,118)(8,119)(9,120)(10,101)(11,102)(12,103)(13,104)(14,105)(15,106)(16,107)(17,108)(18,109)(19,110)(20,111)(21,41)(22,42)(23,43)(24,44)(25,45)(26,46)(27,47)(28,48)(29,49)(30,50)(31,51)(32,52)(33,53)(34,54)(35,55)(36,56)(37,57)(38,58)(39,59)(40,60)(61,100)(62,81)(63,82)(64,83)(65,84)(66,85)(67,86)(68,87)(69,88)(70,89)(71,90)(72,91)(73,92)(74,93)(75,94)(76,95)(77,96)(78,97)(79,98)(80,99)(121,150)(122,151)(123,152)(124,153)(125,154)(126,155)(127,156)(128,157)(129,158)(130,159)(131,160)(132,141)(133,142)(134,143)(135,144)(136,145)(137,146)(138,147)(139,148)(140,149), (1,112)(2,113)(3,114)(4,115)(5,116)(6,117)(7,118)(8,119)(9,120)(10,101)(11,102)(12,103)(13,104)(14,105)(15,106)(16,107)(17,108)(18,109)(19,110)(20,111)(21,41)(22,42)(23,43)(24,44)(25,45)(26,46)(27,47)(28,48)(29,49)(30,50)(31,51)(32,52)(33,53)(34,54)(35,55)(36,56)(37,57)(38,58)(39,59)(40,60)(61,90)(62,91)(63,92)(64,93)(65,94)(66,95)(67,96)(68,97)(69,98)(70,99)(71,100)(72,81)(73,82)(74,83)(75,84)(76,85)(77,86)(78,87)(79,88)(80,89)(121,160)(122,141)(123,142)(124,143)(125,144)(126,145)(127,146)(128,147)(129,148)(130,149)(131,150)(132,151)(133,152)(134,153)(135,154)(136,155)(137,156)(138,157)(139,158)(140,159), (1,58)(2,59)(3,60)(4,41)(5,42)(6,43)(7,44)(8,45)(9,46)(10,47)(11,48)(12,49)(13,50)(14,51)(15,52)(16,53)(17,54)(18,55)(19,56)(20,57)(21,115)(22,116)(23,117)(24,118)(25,119)(26,120)(27,101)(28,102)(29,103)(30,104)(31,105)(32,106)(33,107)(34,108)(35,109)(36,110)(37,111)(38,112)(39,113)(40,114)(61,160)(62,141)(63,142)(64,143)(65,144)(66,145)(67,146)(68,147)(69,148)(70,149)(71,150)(72,151)(73,152)(74,153)(75,154)(76,155)(77,156)(78,157)(79,158)(80,159)(81,132)(82,133)(83,134)(84,135)(85,136)(86,137)(87,138)(88,139)(89,140)(90,121)(91,122)(92,123)(93,124)(94,125)(95,126)(96,127)(97,128)(98,129)(99,130)(100,131), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,131,28,61)(2,89,29,149)(3,129,30,79)(4,87,31,147)(5,127,32,77)(6,85,33,145)(7,125,34,75)(8,83,35,143)(9,123,36,73)(10,81,37,141)(11,121,38,71)(12,99,39,159)(13,139,40,69)(14,97,21,157)(15,137,22,67)(16,95,23,155)(17,135,24,65)(18,93,25,153)(19,133,26,63)(20,91,27,151)(41,138,105,68)(42,96,106,156)(43,136,107,66)(44,94,108,154)(45,134,109,64)(46,92,110,152)(47,132,111,62)(48,90,112,150)(49,130,113,80)(50,88,114,148)(51,128,115,78)(52,86,116,146)(53,126,117,76)(54,84,118,144)(55,124,119,74)(56,82,120,142)(57,122,101,72)(58,100,102,160)(59,140,103,70)(60,98,104,158)>;
G:=Group( (1,112)(2,113)(3,114)(4,115)(5,116)(6,117)(7,118)(8,119)(9,120)(10,101)(11,102)(12,103)(13,104)(14,105)(15,106)(16,107)(17,108)(18,109)(19,110)(20,111)(21,41)(22,42)(23,43)(24,44)(25,45)(26,46)(27,47)(28,48)(29,49)(30,50)(31,51)(32,52)(33,53)(34,54)(35,55)(36,56)(37,57)(38,58)(39,59)(40,60)(61,100)(62,81)(63,82)(64,83)(65,84)(66,85)(67,86)(68,87)(69,88)(70,89)(71,90)(72,91)(73,92)(74,93)(75,94)(76,95)(77,96)(78,97)(79,98)(80,99)(121,150)(122,151)(123,152)(124,153)(125,154)(126,155)(127,156)(128,157)(129,158)(130,159)(131,160)(132,141)(133,142)(134,143)(135,144)(136,145)(137,146)(138,147)(139,148)(140,149), (1,112)(2,113)(3,114)(4,115)(5,116)(6,117)(7,118)(8,119)(9,120)(10,101)(11,102)(12,103)(13,104)(14,105)(15,106)(16,107)(17,108)(18,109)(19,110)(20,111)(21,41)(22,42)(23,43)(24,44)(25,45)(26,46)(27,47)(28,48)(29,49)(30,50)(31,51)(32,52)(33,53)(34,54)(35,55)(36,56)(37,57)(38,58)(39,59)(40,60)(61,90)(62,91)(63,92)(64,93)(65,94)(66,95)(67,96)(68,97)(69,98)(70,99)(71,100)(72,81)(73,82)(74,83)(75,84)(76,85)(77,86)(78,87)(79,88)(80,89)(121,160)(122,141)(123,142)(124,143)(125,144)(126,145)(127,146)(128,147)(129,148)(130,149)(131,150)(132,151)(133,152)(134,153)(135,154)(136,155)(137,156)(138,157)(139,158)(140,159), (1,58)(2,59)(3,60)(4,41)(5,42)(6,43)(7,44)(8,45)(9,46)(10,47)(11,48)(12,49)(13,50)(14,51)(15,52)(16,53)(17,54)(18,55)(19,56)(20,57)(21,115)(22,116)(23,117)(24,118)(25,119)(26,120)(27,101)(28,102)(29,103)(30,104)(31,105)(32,106)(33,107)(34,108)(35,109)(36,110)(37,111)(38,112)(39,113)(40,114)(61,160)(62,141)(63,142)(64,143)(65,144)(66,145)(67,146)(68,147)(69,148)(70,149)(71,150)(72,151)(73,152)(74,153)(75,154)(76,155)(77,156)(78,157)(79,158)(80,159)(81,132)(82,133)(83,134)(84,135)(85,136)(86,137)(87,138)(88,139)(89,140)(90,121)(91,122)(92,123)(93,124)(94,125)(95,126)(96,127)(97,128)(98,129)(99,130)(100,131), (1,11)(2,12)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40)(41,51)(42,52)(43,53)(44,54)(45,55)(46,56)(47,57)(48,58)(49,59)(50,60)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(81,91)(82,92)(83,93)(84,94)(85,95)(86,96)(87,97)(88,98)(89,99)(90,100)(101,111)(102,112)(103,113)(104,114)(105,115)(106,116)(107,117)(108,118)(109,119)(110,120)(121,131)(122,132)(123,133)(124,134)(125,135)(126,136)(127,137)(128,138)(129,139)(130,140)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,131,28,61)(2,89,29,149)(3,129,30,79)(4,87,31,147)(5,127,32,77)(6,85,33,145)(7,125,34,75)(8,83,35,143)(9,123,36,73)(10,81,37,141)(11,121,38,71)(12,99,39,159)(13,139,40,69)(14,97,21,157)(15,137,22,67)(16,95,23,155)(17,135,24,65)(18,93,25,153)(19,133,26,63)(20,91,27,151)(41,138,105,68)(42,96,106,156)(43,136,107,66)(44,94,108,154)(45,134,109,64)(46,92,110,152)(47,132,111,62)(48,90,112,150)(49,130,113,80)(50,88,114,148)(51,128,115,78)(52,86,116,146)(53,126,117,76)(54,84,118,144)(55,124,119,74)(56,82,120,142)(57,122,101,72)(58,100,102,160)(59,140,103,70)(60,98,104,158) );
G=PermutationGroup([(1,112),(2,113),(3,114),(4,115),(5,116),(6,117),(7,118),(8,119),(9,120),(10,101),(11,102),(12,103),(13,104),(14,105),(15,106),(16,107),(17,108),(18,109),(19,110),(20,111),(21,41),(22,42),(23,43),(24,44),(25,45),(26,46),(27,47),(28,48),(29,49),(30,50),(31,51),(32,52),(33,53),(34,54),(35,55),(36,56),(37,57),(38,58),(39,59),(40,60),(61,100),(62,81),(63,82),(64,83),(65,84),(66,85),(67,86),(68,87),(69,88),(70,89),(71,90),(72,91),(73,92),(74,93),(75,94),(76,95),(77,96),(78,97),(79,98),(80,99),(121,150),(122,151),(123,152),(124,153),(125,154),(126,155),(127,156),(128,157),(129,158),(130,159),(131,160),(132,141),(133,142),(134,143),(135,144),(136,145),(137,146),(138,147),(139,148),(140,149)], [(1,112),(2,113),(3,114),(4,115),(5,116),(6,117),(7,118),(8,119),(9,120),(10,101),(11,102),(12,103),(13,104),(14,105),(15,106),(16,107),(17,108),(18,109),(19,110),(20,111),(21,41),(22,42),(23,43),(24,44),(25,45),(26,46),(27,47),(28,48),(29,49),(30,50),(31,51),(32,52),(33,53),(34,54),(35,55),(36,56),(37,57),(38,58),(39,59),(40,60),(61,90),(62,91),(63,92),(64,93),(65,94),(66,95),(67,96),(68,97),(69,98),(70,99),(71,100),(72,81),(73,82),(74,83),(75,84),(76,85),(77,86),(78,87),(79,88),(80,89),(121,160),(122,141),(123,142),(124,143),(125,144),(126,145),(127,146),(128,147),(129,148),(130,149),(131,150),(132,151),(133,152),(134,153),(135,154),(136,155),(137,156),(138,157),(139,158),(140,159)], [(1,58),(2,59),(3,60),(4,41),(5,42),(6,43),(7,44),(8,45),(9,46),(10,47),(11,48),(12,49),(13,50),(14,51),(15,52),(16,53),(17,54),(18,55),(19,56),(20,57),(21,115),(22,116),(23,117),(24,118),(25,119),(26,120),(27,101),(28,102),(29,103),(30,104),(31,105),(32,106),(33,107),(34,108),(35,109),(36,110),(37,111),(38,112),(39,113),(40,114),(61,160),(62,141),(63,142),(64,143),(65,144),(66,145),(67,146),(68,147),(69,148),(70,149),(71,150),(72,151),(73,152),(74,153),(75,154),(76,155),(77,156),(78,157),(79,158),(80,159),(81,132),(82,133),(83,134),(84,135),(85,136),(86,137),(87,138),(88,139),(89,140),(90,121),(91,122),(92,123),(93,124),(94,125),(95,126),(96,127),(97,128),(98,129),(99,130),(100,131)], [(1,11),(2,12),(3,13),(4,14),(5,15),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40),(41,51),(42,52),(43,53),(44,54),(45,55),(46,56),(47,57),(48,58),(49,59),(50,60),(61,71),(62,72),(63,73),(64,74),(65,75),(66,76),(67,77),(68,78),(69,79),(70,80),(81,91),(82,92),(83,93),(84,94),(85,95),(86,96),(87,97),(88,98),(89,99),(90,100),(101,111),(102,112),(103,113),(104,114),(105,115),(106,116),(107,117),(108,118),(109,119),(110,120),(121,131),(122,132),(123,133),(124,134),(125,135),(126,136),(127,137),(128,138),(129,139),(130,140),(141,151),(142,152),(143,153),(144,154),(145,155),(146,156),(147,157),(148,158),(149,159),(150,160)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,131,28,61),(2,89,29,149),(3,129,30,79),(4,87,31,147),(5,127,32,77),(6,85,33,145),(7,125,34,75),(8,83,35,143),(9,123,36,73),(10,81,37,141),(11,121,38,71),(12,99,39,159),(13,139,40,69),(14,97,21,157),(15,137,22,67),(16,95,23,155),(17,135,24,65),(18,93,25,153),(19,133,26,63),(20,91,27,151),(41,138,105,68),(42,96,106,156),(43,136,107,66),(44,94,108,154),(45,134,109,64),(46,92,110,152),(47,132,111,62),(48,90,112,150),(49,130,113,80),(50,88,114,148),(51,128,115,78),(52,86,116,146),(53,126,117,76),(54,84,118,144),(55,124,119,74),(56,82,120,142),(57,122,101,72),(58,100,102,160),(59,140,103,70),(60,98,104,158)])
92 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 4A | ··· | 4H | 4I | ··· | 4P | 5A | 5B | 10A | ··· | 10AD | 20A | ··· | 20AF |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 5 | 5 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 2 | ··· | 2 | 20 | ··· | 20 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
92 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | - | + | + | ||||
image | C1 | C2 | C2 | C2 | C4 | D4 | D5 | C4○D4 | Dic5 | D10 | D10 | C5⋊D4 | C4○D20 |
kernel | C24.63D10 | C10.10C42 | C2×C23.D5 | C23×C20 | C22×C20 | C22×C10 | C23×C4 | C2×C10 | C22×C4 | C22×C4 | C24 | C23 | C22 |
# reps | 1 | 4 | 2 | 1 | 8 | 4 | 2 | 8 | 8 | 4 | 2 | 16 | 32 |
Matrix representation of C24.63D10 ►in GL5(𝔽41)
1 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 1 |
40 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 |
0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 40 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 40 | 0 |
0 | 0 | 0 | 0 | 40 |
40 | 0 | 0 | 0 | 0 |
0 | 18 | 0 | 0 | 0 |
0 | 0 | 25 | 0 | 0 |
0 | 0 | 0 | 21 | 0 |
0 | 0 | 0 | 0 | 2 |
9 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 0 | 0 |
0 | 18 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 39 |
0 | 0 | 0 | 21 | 0 |
G:=sub<GL(5,GF(41))| [1,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,1],[40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40],[1,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,40,0,0,0,0,0,40],[40,0,0,0,0,0,18,0,0,0,0,0,25,0,0,0,0,0,21,0,0,0,0,0,2],[9,0,0,0,0,0,0,18,0,0,0,16,0,0,0,0,0,0,0,21,0,0,0,39,0] >;
C24.63D10 in GAP, Magma, Sage, TeX
C_2^4._{63}D_{10}
% in TeX
G:=Group("C2^4.63D10");
// GroupNames label
G:=SmallGroup(320,838);
// by ID
G=gap.SmallGroup(320,838);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,477,422,184,12550]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^10=d,f^2=b*c*d,a*b=b*a,a*c=c*a,f*a*f^-1=a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=c*e^9>;
// generators/relations