metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C4○D20, D20⋊5C2, C4○Dic10, C4.16D10, Dic10⋊5C2, C10.4C23, C22.2D10, C20.16C22, D10.1C22, Dic5.2C22, (C2×C4)⋊3D5, (C2×C20)⋊4C2, (C4×D5)⋊4C2, C5⋊1(C4○D4), C4○(C5⋊D4), C5⋊D4⋊3C2, C2.5(C22×D5), (C2×C10).11C22, SmallGroup(80,38)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C4○D20
G = < a,b,c | a4=c2=1, b10=a2, ab=ba, ac=ca, cbc=a2b9 >
Character table of C4○D20
class | 1 | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D | 4E | 5A | 5B | 10A | 10B | 10C | 10D | 10E | 10F | 20A | 20B | 20C | 20D | 20E | 20F | 20G | 20H | |
size | 1 | 1 | 2 | 10 | 10 | 1 | 1 | 2 | 10 | 10 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | orthogonal lifted from D10 |
ρ10 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | orthogonal lifted from D5 |
ρ11 | 2 | 2 | 2 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | orthogonal lifted from D5 |
ρ12 | 2 | 2 | -2 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | orthogonal lifted from D10 |
ρ13 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | orthogonal lifted from D10 |
ρ14 | 2 | 2 | -2 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | orthogonal lifted from D10 |
ρ15 | 2 | 2 | -2 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | -1+√5/2 | -1-√5/2 | -1-√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | 1+√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | -1-√5/2 | orthogonal lifted from D10 |
ρ16 | 2 | 2 | -2 | 0 | 0 | -2 | -2 | 2 | 0 | 0 | -1-√5/2 | -1+√5/2 | -1+√5/2 | 1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | -1-√5/2 | -1-√5/2 | -1+√5/2 | -1+√5/2 | -1-√5/2 | 1+√5/2 | 1+√5/2 | 1-√5/2 | 1-√5/2 | orthogonal lifted from D10 |
ρ17 | 2 | -2 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 2i | -2i | -2i | 2i | complex lifted from C4○D4 |
ρ18 | 2 | -2 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | -2i | 2i | 2i | -2i | complex lifted from C4○D4 |
ρ19 | 2 | -2 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1-√5/2 | -ζ54+ζ5 | ζ53-ζ52 | -ζ53+ζ52 | ζ54-ζ5 | 1+√5/2 | ζ4ζ53-ζ4ζ52 | ζ43ζ54-ζ43ζ5 | -ζ43ζ54+ζ43ζ5 | -ζ4ζ53+ζ4ζ52 | ζ43ζ53+ζ43ζ52 | ζ4ζ53+ζ4ζ52 | ζ4ζ54+ζ4ζ5 | ζ43ζ54+ζ43ζ5 | complex faithful |
ρ20 | 2 | -2 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1+√5/2 | ζ53-ζ52 | ζ54-ζ5 | -ζ54+ζ5 | -ζ53+ζ52 | 1-√5/2 | -ζ43ζ54+ζ43ζ5 | ζ4ζ53-ζ4ζ52 | -ζ4ζ53+ζ4ζ52 | ζ43ζ54-ζ43ζ5 | ζ43ζ54+ζ43ζ5 | ζ4ζ54+ζ4ζ5 | ζ4ζ53+ζ4ζ52 | ζ43ζ53+ζ43ζ52 | complex faithful |
ρ21 | 2 | -2 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1+√5/2 | -ζ53+ζ52 | -ζ54+ζ5 | ζ54-ζ5 | ζ53-ζ52 | 1-√5/2 | -ζ43ζ54+ζ43ζ5 | ζ4ζ53-ζ4ζ52 | -ζ4ζ53+ζ4ζ52 | ζ43ζ54-ζ43ζ5 | ζ4ζ54+ζ4ζ5 | ζ43ζ54+ζ43ζ5 | ζ43ζ53+ζ43ζ52 | ζ4ζ53+ζ4ζ52 | complex faithful |
ρ22 | 2 | -2 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1-√5/2 | -ζ54+ζ5 | ζ53-ζ52 | -ζ53+ζ52 | ζ54-ζ5 | 1+√5/2 | -ζ4ζ53+ζ4ζ52 | -ζ43ζ54+ζ43ζ5 | ζ43ζ54-ζ43ζ5 | ζ4ζ53-ζ4ζ52 | ζ4ζ53+ζ4ζ52 | ζ43ζ53+ζ43ζ52 | ζ43ζ54+ζ43ζ5 | ζ4ζ54+ζ4ζ5 | complex faithful |
ρ23 | 2 | -2 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1-√5/2 | ζ54-ζ5 | -ζ53+ζ52 | ζ53-ζ52 | -ζ54+ζ5 | 1+√5/2 | -ζ4ζ53+ζ4ζ52 | -ζ43ζ54+ζ43ζ5 | ζ43ζ54-ζ43ζ5 | ζ4ζ53-ζ4ζ52 | ζ43ζ53+ζ43ζ52 | ζ4ζ53+ζ4ζ52 | ζ4ζ54+ζ4ζ5 | ζ43ζ54+ζ43ζ5 | complex faithful |
ρ24 | 2 | -2 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | -1-√5/2 | -1+√5/2 | 1-√5/2 | ζ54-ζ5 | -ζ53+ζ52 | ζ53-ζ52 | -ζ54+ζ5 | 1+√5/2 | ζ4ζ53-ζ4ζ52 | ζ43ζ54-ζ43ζ5 | -ζ43ζ54+ζ43ζ5 | -ζ4ζ53+ζ4ζ52 | ζ4ζ53+ζ4ζ52 | ζ43ζ53+ζ43ζ52 | ζ43ζ54+ζ43ζ5 | ζ4ζ54+ζ4ζ5 | complex faithful |
ρ25 | 2 | -2 | 0 | 0 | 0 | -2i | 2i | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1+√5/2 | -ζ53+ζ52 | -ζ54+ζ5 | ζ54-ζ5 | ζ53-ζ52 | 1-√5/2 | ζ43ζ54-ζ43ζ5 | -ζ4ζ53+ζ4ζ52 | ζ4ζ53-ζ4ζ52 | -ζ43ζ54+ζ43ζ5 | ζ43ζ54+ζ43ζ5 | ζ4ζ54+ζ4ζ5 | ζ4ζ53+ζ4ζ52 | ζ43ζ53+ζ43ζ52 | complex faithful |
ρ26 | 2 | -2 | 0 | 0 | 0 | 2i | -2i | 0 | 0 | 0 | -1+√5/2 | -1-√5/2 | 1+√5/2 | ζ53-ζ52 | ζ54-ζ5 | -ζ54+ζ5 | -ζ53+ζ52 | 1-√5/2 | ζ43ζ54-ζ43ζ5 | -ζ4ζ53+ζ4ζ52 | ζ4ζ53-ζ4ζ52 | -ζ43ζ54+ζ43ζ5 | ζ4ζ54+ζ4ζ5 | ζ43ζ54+ζ43ζ5 | ζ43ζ53+ζ43ζ52 | ζ4ζ53+ζ4ζ52 | complex faithful |
(1 31 11 21)(2 32 12 22)(3 33 13 23)(4 34 14 24)(5 35 15 25)(6 36 16 26)(7 37 17 27)(8 38 18 28)(9 39 19 29)(10 40 20 30)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(16 20)(17 19)(21 35)(22 34)(23 33)(24 32)(25 31)(26 30)(27 29)(36 40)(37 39)
G:=sub<Sym(40)| (1,31,11,21)(2,32,12,22)(3,33,13,23)(4,34,14,24)(5,35,15,25)(6,36,16,26)(7,37,17,27)(8,38,18,28)(9,39,19,29)(10,40,20,30), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(21,35)(22,34)(23,33)(24,32)(25,31)(26,30)(27,29)(36,40)(37,39)>;
G:=Group( (1,31,11,21)(2,32,12,22)(3,33,13,23)(4,34,14,24)(5,35,15,25)(6,36,16,26)(7,37,17,27)(8,38,18,28)(9,39,19,29)(10,40,20,30), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(16,20)(17,19)(21,35)(22,34)(23,33)(24,32)(25,31)(26,30)(27,29)(36,40)(37,39) );
G=PermutationGroup([[(1,31,11,21),(2,32,12,22),(3,33,13,23),(4,34,14,24),(5,35,15,25),(6,36,16,26),(7,37,17,27),(8,38,18,28),(9,39,19,29),(10,40,20,30)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(16,20),(17,19),(21,35),(22,34),(23,33),(24,32),(25,31),(26,30),(27,29),(36,40),(37,39)]])
C4○D20 is a maximal subgroup of
D20⋊4C4 D20⋊7C4 D20.3C4 D40⋊7C2 D20.2C4 C8⋊D10 C8.D10 D4.D10 C20.C23 D4.8D10 D4⋊6D10 Q8.10D10 D5×C4○D4 D4⋊8D10 D4.10D10 D20⋊5S3 D60⋊C2 D6.D10 Dic5.D6 D60⋊11C2 D100⋊5C2 D20⋊5D5 D10.9D10 Dic10⋊5D5 Dic5.D10 C20.50D10
C4○D20 is a maximal quotient of
C4×Dic10 C20.6Q8 C42⋊D5 C4×D20 C4.D20 C42⋊2D5 C23.D10 D10.12D4 D10⋊D4 Dic5.5D4 Dic5.Q8 D10.13D4 D10⋊Q8 C4⋊C4⋊D5 C20.48D4 C23.21D10 C4×C5⋊D4 C23.23D10 C20⋊7D4 D20⋊5S3 D60⋊C2 D6.D10 Dic5.D6 D60⋊11C2 D100⋊5C2 D20⋊5D5 D10.9D10 Dic10⋊5D5 Dic5.D10 C20.50D10
Matrix representation of C4○D20 ►in GL2(𝔽41) generated by
9 | 0 |
0 | 9 |
16 | 2 |
39 | 28 |
35 | 1 |
6 | 6 |
G:=sub<GL(2,GF(41))| [9,0,0,9],[16,39,2,28],[35,6,1,6] >;
C4○D20 in GAP, Magma, Sage, TeX
C_4\circ D_{20}
% in TeX
G:=Group("C4oD20");
// GroupNames label
G:=SmallGroup(80,38);
// by ID
G=gap.SmallGroup(80,38);
# by ID
G:=PCGroup([5,-2,-2,-2,-2,-5,46,182,1604]);
// Polycyclic
G:=Group<a,b,c|a^4=c^2=1,b^10=a^2,a*b=b*a,a*c=c*a,c*b*c=a^2*b^9>;
// generators/relations
Export
Subgroup lattice of C4○D20 in TeX
Character table of C4○D20 in TeX