extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2×C4).1(C2×Dic5) = C42⋊Dic5 | φ: C2×Dic5/C10 → C4 ⊆ Aut C2×C4 | 80 | 4 | (C2xC4).1(C2xDic5) | 320,99 |
(C2×C4).2(C2×Dic5) = C42.Dic5 | φ: C2×Dic5/C10 → C4 ⊆ Aut C2×C4 | 80 | 4 | (C2xC4).2(C2xDic5) | 320,100 |
(C2×C4).3(C2×Dic5) = C42⋊3Dic5 | φ: C2×Dic5/C10 → C4 ⊆ Aut C2×C4 | 40 | 4 | (C2xC4).3(C2xDic5) | 320,103 |
(C2×C4).4(C2×Dic5) = C42.3Dic5 | φ: C2×Dic5/C10 → C4 ⊆ Aut C2×C4 | 80 | 4 | (C2xC4).4(C2xDic5) | 320,106 |
(C2×C4).5(C2×Dic5) = (D4×C10).29C4 | φ: C2×Dic5/C10 → C4 ⊆ Aut C2×C4 | 80 | 4 | (C2xC4).5(C2xDic5) | 320,864 |
(C2×C4).6(C2×Dic5) = (D4×C10)⋊22C4 | φ: C2×Dic5/C10 → C4 ⊆ Aut C2×C4 | 80 | 4 | (C2xC4).6(C2xDic5) | 320,867 |
(C2×C4).7(C2×Dic5) = C4⋊C4⋊Dic5 | φ: C2×Dic5/C10 → C22 ⊆ Aut C2×C4 | 80 | | (C2xC4).7(C2xDic5) | 320,95 |
(C2×C4).8(C2×Dic5) = C10.29C4≀C2 | φ: C2×Dic5/C10 → C22 ⊆ Aut C2×C4 | 80 | | (C2xC4).8(C2xDic5) | 320,96 |
(C2×C4).9(C2×Dic5) = C42.7D10 | φ: C2×Dic5/C10 → C22 ⊆ Aut C2×C4 | 160 | | (C2xC4).9(C2xDic5) | 320,98 |
(C2×C4).10(C2×Dic5) = C42.8D10 | φ: C2×Dic5/C10 → C22 ⊆ Aut C2×C4 | 320 | | (C2xC4).10(C2xDic5) | 320,101 |
(C2×C4).11(C2×Dic5) = C20.9D8 | φ: C2×Dic5/C10 → C22 ⊆ Aut C2×C4 | 160 | | (C2xC4).11(C2xDic5) | 320,102 |
(C2×C4).12(C2×Dic5) = C20.5Q16 | φ: C2×Dic5/C10 → C22 ⊆ Aut C2×C4 | 320 | | (C2xC4).12(C2xDic5) | 320,104 |
(C2×C4).13(C2×Dic5) = C20.10D8 | φ: C2×Dic5/C10 → C22 ⊆ Aut C2×C4 | 320 | | (C2xC4).13(C2xDic5) | 320,105 |
(C2×C4).14(C2×Dic5) = M4(2)⋊Dic5 | φ: C2×Dic5/C10 → C22 ⊆ Aut C2×C4 | 160 | | (C2xC4).14(C2xDic5) | 320,112 |
(C2×C4).15(C2×Dic5) = M4(2)⋊4Dic5 | φ: C2×Dic5/C10 → C22 ⊆ Aut C2×C4 | 80 | 4 | (C2xC4).15(C2xDic5) | 320,117 |
(C2×C4).16(C2×Dic5) = C24.8D10 | φ: C2×Dic5/C10 → C22 ⊆ Aut C2×C4 | 160 | | (C2xC4).16(C2xDic5) | 320,578 |
(C2×C4).17(C2×Dic5) = C4⋊C4⋊5Dic5 | φ: C2×Dic5/C10 → C22 ⊆ Aut C2×C4 | 320 | | (C2xC4).17(C2xDic5) | 320,608 |
(C2×C4).18(C2×Dic5) = C20⋊6(C4⋊C4) | φ: C2×Dic5/C10 → C22 ⊆ Aut C2×C4 | 320 | | (C2xC4).18(C2xDic5) | 320,612 |
(C2×C4).19(C2×Dic5) = C42.187D10 | φ: C2×Dic5/C10 → C22 ⊆ Aut C2×C4 | 160 | | (C2xC4).19(C2xDic5) | 320,627 |
(C2×C4).20(C2×Dic5) = C20⋊7M4(2) | φ: C2×Dic5/C10 → C22 ⊆ Aut C2×C4 | 160 | | (C2xC4).20(C2xDic5) | 320,639 |
(C2×C4).21(C2×Dic5) = C23.47D20 | φ: C2×Dic5/C10 → C22 ⊆ Aut C2×C4 | 160 | | (C2xC4).21(C2xDic5) | 320,748 |
(C2×C4).22(C2×Dic5) = M4(2).Dic5 | φ: C2×Dic5/C10 → C22 ⊆ Aut C2×C4 | 80 | 4 | (C2xC4).22(C2xDic5) | 320,752 |
(C2×C4).23(C2×Dic5) = (D4×C10)⋊18C4 | φ: C2×Dic5/C10 → C22 ⊆ Aut C2×C4 | 80 | | (C2xC4).23(C2xDic5) | 320,842 |
(C2×C4).24(C2×Dic5) = C2×C20.D4 | φ: C2×Dic5/C10 → C22 ⊆ Aut C2×C4 | 80 | | (C2xC4).24(C2xDic5) | 320,843 |
(C2×C4).25(C2×Dic5) = (Q8×C10)⋊16C4 | φ: C2×Dic5/C10 → C22 ⊆ Aut C2×C4 | 160 | | (C2xC4).25(C2xDic5) | 320,852 |
(C2×C4).26(C2×Dic5) = C2×C20.10D4 | φ: C2×Dic5/C10 → C22 ⊆ Aut C2×C4 | 160 | | (C2xC4).26(C2xDic5) | 320,853 |
(C2×C4).27(C2×Dic5) = (Q8×C10)⋊17C4 | φ: C2×Dic5/C10 → C22 ⊆ Aut C2×C4 | 320 | | (C2xC4).27(C2xDic5) | 320,857 |
(C2×C4).28(C2×Dic5) = C4○D4⋊Dic5 | φ: C2×Dic5/C10 → C22 ⊆ Aut C2×C4 | 160 | | (C2xC4).28(C2xDic5) | 320,859 |
(C2×C4).29(C2×Dic5) = (D4×C10)⋊21C4 | φ: C2×Dic5/C10 → C22 ⊆ Aut C2×C4 | 80 | 4 | (C2xC4).29(C2xDic5) | 320,863 |
(C2×C4).30(C2×Dic5) = C10.422- 1+4 | φ: C2×Dic5/C10 → C22 ⊆ Aut C2×C4 | 160 | | (C2xC4).30(C2xDic5) | 320,1484 |
(C2×C4).31(C2×Dic5) = C20.76C24 | φ: C2×Dic5/C10 → C22 ⊆ Aut C2×C4 | 80 | 4 | (C2xC4).31(C2xDic5) | 320,1491 |
(C2×C4).32(C2×Dic5) = C4⋊C4×Dic5 | φ: C2×Dic5/Dic5 → C2 ⊆ Aut C2×C4 | 320 | | (C2xC4).32(C2xDic5) | 320,602 |
(C2×C4).33(C2×Dic5) = D4×C5⋊2C8 | φ: C2×Dic5/Dic5 → C2 ⊆ Aut C2×C4 | 160 | | (C2xC4).33(C2xDic5) | 320,637 |
(C2×C4).34(C2×Dic5) = C42.47D10 | φ: C2×Dic5/Dic5 → C2 ⊆ Aut C2×C4 | 160 | | (C2xC4).34(C2xDic5) | 320,638 |
(C2×C4).35(C2×Dic5) = C20.31C42 | φ: C2×Dic5/Dic5 → C2 ⊆ Aut C2×C4 | 320 | | (C2xC4).35(C2xDic5) | 320,87 |
(C2×C4).36(C2×Dic5) = C20.32C42 | φ: C2×Dic5/Dic5 → C2 ⊆ Aut C2×C4 | 80 | | (C2xC4).36(C2xDic5) | 320,90 |
(C2×C4).37(C2×Dic5) = C20.57D8 | φ: C2×Dic5/Dic5 → C2 ⊆ Aut C2×C4 | 160 | | (C2xC4).37(C2xDic5) | 320,92 |
(C2×C4).38(C2×Dic5) = C20.26Q16 | φ: C2×Dic5/Dic5 → C2 ⊆ Aut C2×C4 | 320 | | (C2xC4).38(C2xDic5) | 320,93 |
(C2×C4).39(C2×Dic5) = C20.33C42 | φ: C2×Dic5/Dic5 → C2 ⊆ Aut C2×C4 | 80 | | (C2xC4).39(C2xDic5) | 320,113 |
(C2×C4).40(C2×Dic5) = C20.34C42 | φ: C2×Dic5/Dic5 → C2 ⊆ Aut C2×C4 | 160 | | (C2xC4).40(C2xDic5) | 320,116 |
(C2×C4).41(C2×Dic5) = C40.92D4 | φ: C2×Dic5/Dic5 → C2 ⊆ Aut C2×C4 | 160 | 4 | (C2xC4).41(C2xDic5) | 320,119 |
(C2×C4).42(C2×Dic5) = C20.35C42 | φ: C2×Dic5/Dic5 → C2 ⊆ Aut C2×C4 | 160 | | (C2xC4).42(C2xDic5) | 320,624 |
(C2×C4).43(C2×Dic5) = C42.43D10 | φ: C2×Dic5/Dic5 → C2 ⊆ Aut C2×C4 | 160 | | (C2xC4).43(C2xDic5) | 320,626 |
(C2×C4).44(C2×Dic5) = Q8×C5⋊2C8 | φ: C2×Dic5/Dic5 → C2 ⊆ Aut C2×C4 | 320 | | (C2xC4).44(C2xDic5) | 320,650 |
(C2×C4).45(C2×Dic5) = C42.210D10 | φ: C2×Dic5/Dic5 → C2 ⊆ Aut C2×C4 | 320 | | (C2xC4).45(C2xDic5) | 320,651 |
(C2×C4).46(C2×Dic5) = M4(2)×Dic5 | φ: C2×Dic5/Dic5 → C2 ⊆ Aut C2×C4 | 160 | | (C2xC4).46(C2xDic5) | 320,744 |
(C2×C4).47(C2×Dic5) = C20.37C42 | φ: C2×Dic5/Dic5 → C2 ⊆ Aut C2×C4 | 160 | | (C2xC4).47(C2xDic5) | 320,749 |
(C2×C4).48(C2×Dic5) = C40.70C23 | φ: C2×Dic5/Dic5 → C2 ⊆ Aut C2×C4 | 160 | 4 | (C2xC4).48(C2xDic5) | 320,767 |
(C2×C4).49(C2×Dic5) = C2×D4⋊Dic5 | φ: C2×Dic5/Dic5 → C2 ⊆ Aut C2×C4 | 160 | | (C2xC4).49(C2xDic5) | 320,841 |
(C2×C4).50(C2×Dic5) = C24.19D10 | φ: C2×Dic5/Dic5 → C2 ⊆ Aut C2×C4 | 160 | | (C2xC4).50(C2xDic5) | 320,848 |
(C2×C4).51(C2×Dic5) = C2×Q8⋊Dic5 | φ: C2×Dic5/Dic5 → C2 ⊆ Aut C2×C4 | 320 | | (C2xC4).51(C2xDic5) | 320,851 |
(C2×C4).52(C2×Dic5) = C20.(C2×D4) | φ: C2×Dic5/Dic5 → C2 ⊆ Aut C2×C4 | 160 | | (C2xC4).52(C2xDic5) | 320,860 |
(C2×C4).53(C2×Dic5) = (D4×C10).24C4 | φ: C2×Dic5/Dic5 → C2 ⊆ Aut C2×C4 | 160 | | (C2xC4).53(C2xDic5) | 320,861 |
(C2×C4).54(C2×Dic5) = C2×D4⋊2Dic5 | φ: C2×Dic5/Dic5 → C2 ⊆ Aut C2×C4 | 80 | | (C2xC4).54(C2xDic5) | 320,862 |
(C2×C4).55(C2×Dic5) = C2×Q8×Dic5 | φ: C2×Dic5/Dic5 → C2 ⊆ Aut C2×C4 | 320 | | (C2xC4).55(C2xDic5) | 320,1483 |
(C2×C4).56(C2×Dic5) = C2×D4.Dic5 | φ: C2×Dic5/Dic5 → C2 ⊆ Aut C2×C4 | 160 | | (C2xC4).56(C2xDic5) | 320,1490 |
(C2×C4).57(C2×Dic5) = C4×C4.Dic5 | φ: C2×Dic5/C2×C10 → C2 ⊆ Aut C2×C4 | 160 | | (C2xC4).57(C2xDic5) | 320,549 |
(C2×C4).58(C2×Dic5) = C20⋊13M4(2) | φ: C2×Dic5/C2×C10 → C2 ⊆ Aut C2×C4 | 160 | | (C2xC4).58(C2xDic5) | 320,551 |
(C2×C4).59(C2×Dic5) = C42.7Dic5 | φ: C2×Dic5/C2×C10 → C2 ⊆ Aut C2×C4 | 160 | | (C2xC4).59(C2xDic5) | 320,553 |
(C2×C4).60(C2×Dic5) = C42⋊4Dic5 | φ: C2×Dic5/C2×C10 → C2 ⊆ Aut C2×C4 | 320 | | (C2xC4).60(C2xDic5) | 320,559 |
(C2×C4).61(C2×Dic5) = C4×C4⋊Dic5 | φ: C2×Dic5/C2×C10 → C2 ⊆ Aut C2×C4 | 320 | | (C2xC4).61(C2xDic5) | 320,561 |
(C2×C4).62(C2×Dic5) = C42⋊9Dic5 | φ: C2×Dic5/C2×C10 → C2 ⊆ Aut C2×C4 | 320 | | (C2xC4).62(C2xDic5) | 320,563 |
(C2×C4).63(C2×Dic5) = C42⋊5Dic5 | φ: C2×Dic5/C2×C10 → C2 ⊆ Aut C2×C4 | 320 | | (C2xC4).63(C2xDic5) | 320,564 |
(C2×C4).64(C2×Dic5) = C24.4Dic5 | φ: C2×Dic5/C2×C10 → C2 ⊆ Aut C2×C4 | 80 | | (C2xC4).64(C2xDic5) | 320,834 |
(C2×C4).65(C2×Dic5) = C4×C23.D5 | φ: C2×Dic5/C2×C10 → C2 ⊆ Aut C2×C4 | 160 | | (C2xC4).65(C2xDic5) | 320,836 |
(C2×C4).66(C2×Dic5) = C24.63D10 | φ: C2×Dic5/C2×C10 → C2 ⊆ Aut C2×C4 | 160 | | (C2xC4).66(C2xDic5) | 320,838 |
(C2×C4).67(C2×Dic5) = C40⋊6C8 | φ: C2×Dic5/C2×C10 → C2 ⊆ Aut C2×C4 | 320 | | (C2xC4).67(C2xDic5) | 320,15 |
(C2×C4).68(C2×Dic5) = C40⋊5C8 | φ: C2×Dic5/C2×C10 → C2 ⊆ Aut C2×C4 | 320 | | (C2xC4).68(C2xDic5) | 320,16 |
(C2×C4).69(C2×Dic5) = C40.7C8 | φ: C2×Dic5/C2×C10 → C2 ⊆ Aut C2×C4 | 80 | 2 | (C2xC4).69(C2xDic5) | 320,21 |
(C2×C4).70(C2×Dic5) = C20.45C42 | φ: C2×Dic5/C2×C10 → C2 ⊆ Aut C2×C4 | 80 | 4 | (C2xC4).70(C2xDic5) | 320,24 |
(C2×C4).71(C2×Dic5) = C42⋊6Dic5 | φ: C2×Dic5/C2×C10 → C2 ⊆ Aut C2×C4 | 80 | | (C2xC4).71(C2xDic5) | 320,81 |
(C2×C4).72(C2×Dic5) = C42⋊1Dic5 | φ: C2×Dic5/C2×C10 → C2 ⊆ Aut C2×C4 | 80 | 4 | (C2xC4).72(C2xDic5) | 320,89 |
(C2×C4).73(C2×Dic5) = C20.39C42 | φ: C2×Dic5/C2×C10 → C2 ⊆ Aut C2×C4 | 320 | | (C2xC4).73(C2xDic5) | 320,109 |
(C2×C4).74(C2×Dic5) = C20.40C42 | φ: C2×Dic5/C2×C10 → C2 ⊆ Aut C2×C4 | 160 | | (C2xC4).74(C2xDic5) | 320,110 |
(C2×C4).75(C2×Dic5) = C40.D4 | φ: C2×Dic5/C2×C10 → C2 ⊆ Aut C2×C4 | 80 | 4 | (C2xC4).75(C2xDic5) | 320,111 |
(C2×C4).76(C2×Dic5) = (C2×C40)⋊C4 | φ: C2×Dic5/C2×C10 → C2 ⊆ Aut C2×C4 | 80 | 4 | (C2xC4).76(C2xDic5) | 320,114 |
(C2×C4).77(C2×Dic5) = C23.9D20 | φ: C2×Dic5/C2×C10 → C2 ⊆ Aut C2×C4 | 80 | 4 | (C2xC4).77(C2xDic5) | 320,115 |
(C2×C4).78(C2×Dic5) = C20.51C42 | φ: C2×Dic5/C2×C10 → C2 ⊆ Aut C2×C4 | 80 | 4 | (C2xC4).78(C2xDic5) | 320,118 |
(C2×C4).79(C2×Dic5) = C42⋊8Dic5 | φ: C2×Dic5/C2×C10 → C2 ⊆ Aut C2×C4 | 320 | | (C2xC4).79(C2xDic5) | 320,562 |
(C2×C4).80(C2×Dic5) = C20.42C42 | φ: C2×Dic5/C2×C10 → C2 ⊆ Aut C2×C4 | 160 | | (C2xC4).80(C2xDic5) | 320,728 |
(C2×C4).81(C2×Dic5) = C2×C40⋊6C4 | φ: C2×Dic5/C2×C10 → C2 ⊆ Aut C2×C4 | 320 | | (C2xC4).81(C2xDic5) | 320,731 |
(C2×C4).82(C2×Dic5) = C2×C40⋊5C4 | φ: C2×Dic5/C2×C10 → C2 ⊆ Aut C2×C4 | 320 | | (C2xC4).82(C2xDic5) | 320,732 |
(C2×C4).83(C2×Dic5) = C23.22D20 | φ: C2×Dic5/C2×C10 → C2 ⊆ Aut C2×C4 | 160 | | (C2xC4).83(C2xDic5) | 320,733 |
(C2×C4).84(C2×Dic5) = C2×C40.6C4 | φ: C2×Dic5/C2×C10 → C2 ⊆ Aut C2×C4 | 160 | | (C2xC4).84(C2xDic5) | 320,734 |
(C2×C4).85(C2×Dic5) = C24.64D10 | φ: C2×Dic5/C2×C10 → C2 ⊆ Aut C2×C4 | 160 | | (C2xC4).85(C2xDic5) | 320,839 |
(C2×C4).86(C2×Dic5) = C22×C4.Dic5 | φ: C2×Dic5/C2×C10 → C2 ⊆ Aut C2×C4 | 160 | | (C2xC4).86(C2xDic5) | 320,1453 |
(C2×C4).87(C2×Dic5) = C8×C5⋊2C8 | central extension (φ=1) | 320 | | (C2xC4).87(C2xDic5) | 320,11 |
(C2×C4).88(C2×Dic5) = C42.279D10 | central extension (φ=1) | 320 | | (C2xC4).88(C2xDic5) | 320,12 |
(C2×C4).89(C2×Dic5) = C40⋊8C8 | central extension (φ=1) | 320 | | (C2xC4).89(C2xDic5) | 320,13 |
(C2×C4).90(C2×Dic5) = C4×C5⋊2C16 | central extension (φ=1) | 320 | | (C2xC4).90(C2xDic5) | 320,18 |
(C2×C4).91(C2×Dic5) = C40.10C8 | central extension (φ=1) | 320 | | (C2xC4).91(C2xDic5) | 320,19 |
(C2×C4).92(C2×Dic5) = C20⋊3C16 | central extension (φ=1) | 320 | | (C2xC4).92(C2xDic5) | 320,20 |
(C2×C4).93(C2×Dic5) = C40.91D4 | central extension (φ=1) | 160 | | (C2xC4).93(C2xDic5) | 320,107 |
(C2×C4).94(C2×Dic5) = (C2×C40)⋊15C4 | central extension (φ=1) | 320 | | (C2xC4).94(C2xDic5) | 320,108 |
(C2×C4).95(C2×Dic5) = C2×C4×C5⋊2C8 | central extension (φ=1) | 320 | | (C2xC4).95(C2xDic5) | 320,547 |
(C2×C4).96(C2×Dic5) = C2×C42.D5 | central extension (φ=1) | 320 | | (C2xC4).96(C2xDic5) | 320,548 |
(C2×C4).97(C2×Dic5) = C2×C20⋊3C8 | central extension (φ=1) | 320 | | (C2xC4).97(C2xDic5) | 320,550 |
(C2×C4).98(C2×Dic5) = C42.6Dic5 | central extension (φ=1) | 160 | | (C2xC4).98(C2xDic5) | 320,552 |
(C2×C4).99(C2×Dic5) = C42×Dic5 | central extension (φ=1) | 320 | | (C2xC4).99(C2xDic5) | 320,557 |
(C2×C4).100(C2×Dic5) = C22×C5⋊2C16 | central extension (φ=1) | 320 | | (C2xC4).100(C2xDic5) | 320,723 |
(C2×C4).101(C2×Dic5) = C2×C20.4C8 | central extension (φ=1) | 160 | | (C2xC4).101(C2xDic5) | 320,724 |
(C2×C4).102(C2×Dic5) = C2×C8×Dic5 | central extension (φ=1) | 320 | | (C2xC4).102(C2xDic5) | 320,725 |
(C2×C4).103(C2×Dic5) = C2×C40⋊8C4 | central extension (φ=1) | 320 | | (C2xC4).103(C2xDic5) | 320,727 |
(C2×C4).104(C2×Dic5) = C2×C20.55D4 | central extension (φ=1) | 160 | | (C2xC4).104(C2xDic5) | 320,833 |
(C2×C4).105(C2×Dic5) = C23×C5⋊2C8 | central extension (φ=1) | 320 | | (C2xC4).105(C2xDic5) | 320,1452 |