Copied to
clipboard

?

G = C4○D4×C2×C10order 320 = 26·5

Direct product of C2×C10 and C4○D4

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C4○D4×C2×C10, C10.23C25, C20.89C24, (C23×C4)⋊8C10, (C2×C20)⋊18C23, (C23×C20)⋊17C2, (C5×D4)⋊14C23, D43(C22×C10), C2.3(C24×C10), Q83(C22×C10), (C5×Q8)⋊13C23, (D4×C10)⋊70C22, (C22×D4)⋊13C10, C4.12(C23×C10), C24.34(C2×C10), (Q8×C10)⋊59C22, (C22×Q8)⋊11C10, (C2×C10).386C24, (C22×C20)⋊67C22, C22.1(C23×C10), C23.46(C22×C10), (C23×C10).94C22, (C22×C10).269C23, (D4×C2×C10)⋊28C2, (Q8×C2×C10)⋊23C2, (C2×D4)⋊19(C2×C10), (C2×C4)⋊5(C22×C10), (C2×Q8)⋊19(C2×C10), (C22×C4)⋊20(C2×C10), SmallGroup(320,1631)

Series: Derived Chief Lower central Upper central

C1C2 — C4○D4×C2×C10
C1C2C10C2×C10C5×D4C5×C4○D4C10×C4○D4 — C4○D4×C2×C10
C1C2 — C4○D4×C2×C10
C1C22×C20 — C4○D4×C2×C10

Subgroups: 1010 in 890 conjugacy classes, 770 normal (12 characteristic)
C1, C2, C2 [×6], C2 [×12], C4 [×16], C22 [×19], C22 [×36], C5, C2×C4 [×72], D4 [×48], Q8 [×16], C23, C23 [×18], C23 [×12], C10, C10 [×6], C10 [×12], C22×C4, C22×C4 [×39], C2×D4 [×36], C2×Q8 [×12], C4○D4 [×64], C24 [×3], C20 [×16], C2×C10 [×19], C2×C10 [×36], C23×C4 [×3], C22×D4 [×3], C22×Q8, C2×C4○D4 [×24], C2×C20 [×72], C5×D4 [×48], C5×Q8 [×16], C22×C10, C22×C10 [×18], C22×C10 [×12], C22×C4○D4, C22×C20, C22×C20 [×39], D4×C10 [×36], Q8×C10 [×12], C5×C4○D4 [×64], C23×C10 [×3], C23×C20 [×3], D4×C2×C10 [×3], Q8×C2×C10, C10×C4○D4 [×24], C4○D4×C2×C10

Quotients:
C1, C2 [×31], C22 [×155], C5, C23 [×155], C10 [×31], C4○D4 [×4], C24 [×31], C2×C10 [×155], C2×C4○D4 [×6], C25, C22×C10 [×155], C22×C4○D4, C5×C4○D4 [×4], C23×C10 [×31], C10×C4○D4 [×6], C24×C10, C4○D4×C2×C10

Generators and relations
 G = < a,b,c,d,e | a2=b10=c4=e2=1, d2=c2, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=c2d >

Smallest permutation representation
On 160 points
Generators in S160
(1 42)(2 43)(3 44)(4 45)(5 46)(6 47)(7 48)(8 49)(9 50)(10 41)(11 136)(12 137)(13 138)(14 139)(15 140)(16 131)(17 132)(18 133)(19 134)(20 135)(21 37)(22 38)(23 39)(24 40)(25 31)(26 32)(27 33)(28 34)(29 35)(30 36)(51 85)(52 86)(53 87)(54 88)(55 89)(56 90)(57 81)(58 82)(59 83)(60 84)(61 77)(62 78)(63 79)(64 80)(65 71)(66 72)(67 73)(68 74)(69 75)(70 76)(91 125)(92 126)(93 127)(94 128)(95 129)(96 130)(97 121)(98 122)(99 123)(100 124)(101 117)(102 118)(103 119)(104 120)(105 111)(106 112)(107 113)(108 114)(109 115)(110 116)(141 157)(142 158)(143 159)(144 160)(145 151)(146 152)(147 153)(148 154)(149 155)(150 156)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 87 27 78)(2 88 28 79)(3 89 29 80)(4 90 30 71)(5 81 21 72)(6 82 22 73)(7 83 23 74)(8 84 24 75)(9 85 25 76)(10 86 26 77)(11 110 151 91)(12 101 152 92)(13 102 153 93)(14 103 154 94)(15 104 155 95)(16 105 156 96)(17 106 157 97)(18 107 158 98)(19 108 159 99)(20 109 160 100)(31 70 50 51)(32 61 41 52)(33 62 42 53)(34 63 43 54)(35 64 44 55)(36 65 45 56)(37 66 46 57)(38 67 47 58)(39 68 48 59)(40 69 49 60)(111 150 130 131)(112 141 121 132)(113 142 122 133)(114 143 123 134)(115 144 124 135)(116 145 125 136)(117 146 126 137)(118 147 127 138)(119 148 128 139)(120 149 129 140)
(1 127 27 118)(2 128 28 119)(3 129 29 120)(4 130 30 111)(5 121 21 112)(6 122 22 113)(7 123 23 114)(8 124 24 115)(9 125 25 116)(10 126 26 117)(11 70 151 51)(12 61 152 52)(13 62 153 53)(14 63 154 54)(15 64 155 55)(16 65 156 56)(17 66 157 57)(18 67 158 58)(19 68 159 59)(20 69 160 60)(31 110 50 91)(32 101 41 92)(33 102 42 93)(34 103 43 94)(35 104 44 95)(36 105 45 96)(37 106 46 97)(38 107 47 98)(39 108 48 99)(40 109 49 100)(71 150 90 131)(72 141 81 132)(73 142 82 133)(74 143 83 134)(75 144 84 135)(76 145 85 136)(77 146 86 137)(78 147 87 138)(79 148 88 139)(80 149 89 140)
(1 118)(2 119)(3 120)(4 111)(5 112)(6 113)(7 114)(8 115)(9 116)(10 117)(11 70)(12 61)(13 62)(14 63)(15 64)(16 65)(17 66)(18 67)(19 68)(20 69)(21 121)(22 122)(23 123)(24 124)(25 125)(26 126)(27 127)(28 128)(29 129)(30 130)(31 91)(32 92)(33 93)(34 94)(35 95)(36 96)(37 97)(38 98)(39 99)(40 100)(41 101)(42 102)(43 103)(44 104)(45 105)(46 106)(47 107)(48 108)(49 109)(50 110)(51 151)(52 152)(53 153)(54 154)(55 155)(56 156)(57 157)(58 158)(59 159)(60 160)(71 131)(72 132)(73 133)(74 134)(75 135)(76 136)(77 137)(78 138)(79 139)(80 140)(81 141)(82 142)(83 143)(84 144)(85 145)(86 146)(87 147)(88 148)(89 149)(90 150)

G:=sub<Sym(160)| (1,42)(2,43)(3,44)(4,45)(5,46)(6,47)(7,48)(8,49)(9,50)(10,41)(11,136)(12,137)(13,138)(14,139)(15,140)(16,131)(17,132)(18,133)(19,134)(20,135)(21,37)(22,38)(23,39)(24,40)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(51,85)(52,86)(53,87)(54,88)(55,89)(56,90)(57,81)(58,82)(59,83)(60,84)(61,77)(62,78)(63,79)(64,80)(65,71)(66,72)(67,73)(68,74)(69,75)(70,76)(91,125)(92,126)(93,127)(94,128)(95,129)(96,130)(97,121)(98,122)(99,123)(100,124)(101,117)(102,118)(103,119)(104,120)(105,111)(106,112)(107,113)(108,114)(109,115)(110,116)(141,157)(142,158)(143,159)(144,160)(145,151)(146,152)(147,153)(148,154)(149,155)(150,156), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,87,27,78)(2,88,28,79)(3,89,29,80)(4,90,30,71)(5,81,21,72)(6,82,22,73)(7,83,23,74)(8,84,24,75)(9,85,25,76)(10,86,26,77)(11,110,151,91)(12,101,152,92)(13,102,153,93)(14,103,154,94)(15,104,155,95)(16,105,156,96)(17,106,157,97)(18,107,158,98)(19,108,159,99)(20,109,160,100)(31,70,50,51)(32,61,41,52)(33,62,42,53)(34,63,43,54)(35,64,44,55)(36,65,45,56)(37,66,46,57)(38,67,47,58)(39,68,48,59)(40,69,49,60)(111,150,130,131)(112,141,121,132)(113,142,122,133)(114,143,123,134)(115,144,124,135)(116,145,125,136)(117,146,126,137)(118,147,127,138)(119,148,128,139)(120,149,129,140), (1,127,27,118)(2,128,28,119)(3,129,29,120)(4,130,30,111)(5,121,21,112)(6,122,22,113)(7,123,23,114)(8,124,24,115)(9,125,25,116)(10,126,26,117)(11,70,151,51)(12,61,152,52)(13,62,153,53)(14,63,154,54)(15,64,155,55)(16,65,156,56)(17,66,157,57)(18,67,158,58)(19,68,159,59)(20,69,160,60)(31,110,50,91)(32,101,41,92)(33,102,42,93)(34,103,43,94)(35,104,44,95)(36,105,45,96)(37,106,46,97)(38,107,47,98)(39,108,48,99)(40,109,49,100)(71,150,90,131)(72,141,81,132)(73,142,82,133)(74,143,83,134)(75,144,84,135)(76,145,85,136)(77,146,86,137)(78,147,87,138)(79,148,88,139)(80,149,89,140), (1,118)(2,119)(3,120)(4,111)(5,112)(6,113)(7,114)(8,115)(9,116)(10,117)(11,70)(12,61)(13,62)(14,63)(15,64)(16,65)(17,66)(18,67)(19,68)(20,69)(21,121)(22,122)(23,123)(24,124)(25,125)(26,126)(27,127)(28,128)(29,129)(30,130)(31,91)(32,92)(33,93)(34,94)(35,95)(36,96)(37,97)(38,98)(39,99)(40,100)(41,101)(42,102)(43,103)(44,104)(45,105)(46,106)(47,107)(48,108)(49,109)(50,110)(51,151)(52,152)(53,153)(54,154)(55,155)(56,156)(57,157)(58,158)(59,159)(60,160)(71,131)(72,132)(73,133)(74,134)(75,135)(76,136)(77,137)(78,138)(79,139)(80,140)(81,141)(82,142)(83,143)(84,144)(85,145)(86,146)(87,147)(88,148)(89,149)(90,150)>;

G:=Group( (1,42)(2,43)(3,44)(4,45)(5,46)(6,47)(7,48)(8,49)(9,50)(10,41)(11,136)(12,137)(13,138)(14,139)(15,140)(16,131)(17,132)(18,133)(19,134)(20,135)(21,37)(22,38)(23,39)(24,40)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)(51,85)(52,86)(53,87)(54,88)(55,89)(56,90)(57,81)(58,82)(59,83)(60,84)(61,77)(62,78)(63,79)(64,80)(65,71)(66,72)(67,73)(68,74)(69,75)(70,76)(91,125)(92,126)(93,127)(94,128)(95,129)(96,130)(97,121)(98,122)(99,123)(100,124)(101,117)(102,118)(103,119)(104,120)(105,111)(106,112)(107,113)(108,114)(109,115)(110,116)(141,157)(142,158)(143,159)(144,160)(145,151)(146,152)(147,153)(148,154)(149,155)(150,156), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,87,27,78)(2,88,28,79)(3,89,29,80)(4,90,30,71)(5,81,21,72)(6,82,22,73)(7,83,23,74)(8,84,24,75)(9,85,25,76)(10,86,26,77)(11,110,151,91)(12,101,152,92)(13,102,153,93)(14,103,154,94)(15,104,155,95)(16,105,156,96)(17,106,157,97)(18,107,158,98)(19,108,159,99)(20,109,160,100)(31,70,50,51)(32,61,41,52)(33,62,42,53)(34,63,43,54)(35,64,44,55)(36,65,45,56)(37,66,46,57)(38,67,47,58)(39,68,48,59)(40,69,49,60)(111,150,130,131)(112,141,121,132)(113,142,122,133)(114,143,123,134)(115,144,124,135)(116,145,125,136)(117,146,126,137)(118,147,127,138)(119,148,128,139)(120,149,129,140), (1,127,27,118)(2,128,28,119)(3,129,29,120)(4,130,30,111)(5,121,21,112)(6,122,22,113)(7,123,23,114)(8,124,24,115)(9,125,25,116)(10,126,26,117)(11,70,151,51)(12,61,152,52)(13,62,153,53)(14,63,154,54)(15,64,155,55)(16,65,156,56)(17,66,157,57)(18,67,158,58)(19,68,159,59)(20,69,160,60)(31,110,50,91)(32,101,41,92)(33,102,42,93)(34,103,43,94)(35,104,44,95)(36,105,45,96)(37,106,46,97)(38,107,47,98)(39,108,48,99)(40,109,49,100)(71,150,90,131)(72,141,81,132)(73,142,82,133)(74,143,83,134)(75,144,84,135)(76,145,85,136)(77,146,86,137)(78,147,87,138)(79,148,88,139)(80,149,89,140), (1,118)(2,119)(3,120)(4,111)(5,112)(6,113)(7,114)(8,115)(9,116)(10,117)(11,70)(12,61)(13,62)(14,63)(15,64)(16,65)(17,66)(18,67)(19,68)(20,69)(21,121)(22,122)(23,123)(24,124)(25,125)(26,126)(27,127)(28,128)(29,129)(30,130)(31,91)(32,92)(33,93)(34,94)(35,95)(36,96)(37,97)(38,98)(39,99)(40,100)(41,101)(42,102)(43,103)(44,104)(45,105)(46,106)(47,107)(48,108)(49,109)(50,110)(51,151)(52,152)(53,153)(54,154)(55,155)(56,156)(57,157)(58,158)(59,159)(60,160)(71,131)(72,132)(73,133)(74,134)(75,135)(76,136)(77,137)(78,138)(79,139)(80,140)(81,141)(82,142)(83,143)(84,144)(85,145)(86,146)(87,147)(88,148)(89,149)(90,150) );

G=PermutationGroup([(1,42),(2,43),(3,44),(4,45),(5,46),(6,47),(7,48),(8,49),(9,50),(10,41),(11,136),(12,137),(13,138),(14,139),(15,140),(16,131),(17,132),(18,133),(19,134),(20,135),(21,37),(22,38),(23,39),(24,40),(25,31),(26,32),(27,33),(28,34),(29,35),(30,36),(51,85),(52,86),(53,87),(54,88),(55,89),(56,90),(57,81),(58,82),(59,83),(60,84),(61,77),(62,78),(63,79),(64,80),(65,71),(66,72),(67,73),(68,74),(69,75),(70,76),(91,125),(92,126),(93,127),(94,128),(95,129),(96,130),(97,121),(98,122),(99,123),(100,124),(101,117),(102,118),(103,119),(104,120),(105,111),(106,112),(107,113),(108,114),(109,115),(110,116),(141,157),(142,158),(143,159),(144,160),(145,151),(146,152),(147,153),(148,154),(149,155),(150,156)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,87,27,78),(2,88,28,79),(3,89,29,80),(4,90,30,71),(5,81,21,72),(6,82,22,73),(7,83,23,74),(8,84,24,75),(9,85,25,76),(10,86,26,77),(11,110,151,91),(12,101,152,92),(13,102,153,93),(14,103,154,94),(15,104,155,95),(16,105,156,96),(17,106,157,97),(18,107,158,98),(19,108,159,99),(20,109,160,100),(31,70,50,51),(32,61,41,52),(33,62,42,53),(34,63,43,54),(35,64,44,55),(36,65,45,56),(37,66,46,57),(38,67,47,58),(39,68,48,59),(40,69,49,60),(111,150,130,131),(112,141,121,132),(113,142,122,133),(114,143,123,134),(115,144,124,135),(116,145,125,136),(117,146,126,137),(118,147,127,138),(119,148,128,139),(120,149,129,140)], [(1,127,27,118),(2,128,28,119),(3,129,29,120),(4,130,30,111),(5,121,21,112),(6,122,22,113),(7,123,23,114),(8,124,24,115),(9,125,25,116),(10,126,26,117),(11,70,151,51),(12,61,152,52),(13,62,153,53),(14,63,154,54),(15,64,155,55),(16,65,156,56),(17,66,157,57),(18,67,158,58),(19,68,159,59),(20,69,160,60),(31,110,50,91),(32,101,41,92),(33,102,42,93),(34,103,43,94),(35,104,44,95),(36,105,45,96),(37,106,46,97),(38,107,47,98),(39,108,48,99),(40,109,49,100),(71,150,90,131),(72,141,81,132),(73,142,82,133),(74,143,83,134),(75,144,84,135),(76,145,85,136),(77,146,86,137),(78,147,87,138),(79,148,88,139),(80,149,89,140)], [(1,118),(2,119),(3,120),(4,111),(5,112),(6,113),(7,114),(8,115),(9,116),(10,117),(11,70),(12,61),(13,62),(14,63),(15,64),(16,65),(17,66),(18,67),(19,68),(20,69),(21,121),(22,122),(23,123),(24,124),(25,125),(26,126),(27,127),(28,128),(29,129),(30,130),(31,91),(32,92),(33,93),(34,94),(35,95),(36,96),(37,97),(38,98),(39,99),(40,100),(41,101),(42,102),(43,103),(44,104),(45,105),(46,106),(47,107),(48,108),(49,109),(50,110),(51,151),(52,152),(53,153),(54,154),(55,155),(56,156),(57,157),(58,158),(59,159),(60,160),(71,131),(72,132),(73,133),(74,134),(75,135),(76,136),(77,137),(78,138),(79,139),(80,140),(81,141),(82,142),(83,143),(84,144),(85,145),(86,146),(87,147),(88,148),(89,149),(90,150)])

Matrix representation G ⊆ GL4(𝔽41) generated by

1000
04000
00400
00040
,
40000
04000
00370
00037
,
40000
04000
0090
0009
,
40000
0100
00139
00140
,
1000
04000
00139
00040
G:=sub<GL(4,GF(41))| [1,0,0,0,0,40,0,0,0,0,40,0,0,0,0,40],[40,0,0,0,0,40,0,0,0,0,37,0,0,0,0,37],[40,0,0,0,0,40,0,0,0,0,9,0,0,0,0,9],[40,0,0,0,0,1,0,0,0,0,1,1,0,0,39,40],[1,0,0,0,0,40,0,0,0,0,1,0,0,0,39,40] >;

200 conjugacy classes

class 1 2A···2G2H···2S4A···4H4I···4T5A5B5C5D10A···10AB10AC···10BX20A···20AF20AG···20CB
order12···22···24···44···4555510···1010···1020···2020···20
size11···12···21···12···211111···12···21···12···2

200 irreducible representations

dim111111111122
type+++++
imageC1C2C2C2C2C5C10C10C10C10C4○D4C5×C4○D4
kernelC4○D4×C2×C10C23×C20D4×C2×C10Q8×C2×C10C10×C4○D4C22×C4○D4C23×C4C22×D4C22×Q8C2×C4○D4C2×C10C22
# reps13312441212496832

In GAP, Magma, Sage, TeX

C_4\circ D_4\times C_2\times C_{10}
% in TeX

G:=Group("C4oD4xC2xC10");
// GroupNames label

G:=SmallGroup(320,1631);
// by ID

G=gap.SmallGroup(320,1631);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-5,-2,2269,856]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^10=c^4=e^2=1,d^2=c^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=c^2*d>;
// generators/relations

׿
×
𝔽