Extensions 1→N→G→Q→1 with N=C2×D4 and Q=Dic5

Direct product G=N×Q with N=C2×D4 and Q=Dic5
dρLabelID
C2×D4×Dic5160C2xD4xDic5320,1467

Semidirect products G=N:Q with N=C2×D4 and Q=Dic5
extensionφ:Q→Out NdρLabelID
(C2×D4)⋊1Dic5 = C4⋊C4⋊Dic5φ: Dic5/C5C4 ⊆ Out C2×D480(C2xD4):1Dic5320,95
(C2×D4)⋊2Dic5 = C423Dic5φ: Dic5/C5C4 ⊆ Out C2×D4404(C2xD4):2Dic5320,103
(C2×D4)⋊3Dic5 = C2×D4⋊Dic5φ: Dic5/C10C2 ⊆ Out C2×D4160(C2xD4):3Dic5320,841
(C2×D4)⋊4Dic5 = (D4×C10)⋊18C4φ: Dic5/C10C2 ⊆ Out C2×D480(C2xD4):4Dic5320,842
(C2×D4)⋊5Dic5 = C2×C23⋊Dic5φ: Dic5/C10C2 ⊆ Out C2×D480(C2xD4):5Dic5320,846
(C2×D4)⋊6Dic5 = C24.18D10φ: Dic5/C10C2 ⊆ Out C2×D4160(C2xD4):6Dic5320,847
(C2×D4)⋊7Dic5 = C24.19D10φ: Dic5/C10C2 ⊆ Out C2×D4160(C2xD4):7Dic5320,848
(C2×D4)⋊8Dic5 = C2×D42Dic5φ: Dic5/C10C2 ⊆ Out C2×D480(C2xD4):8Dic5320,862
(C2×D4)⋊9Dic5 = (D4×C10)⋊21C4φ: Dic5/C10C2 ⊆ Out C2×D4804(C2xD4):9Dic5320,863
(C2×D4)⋊10Dic5 = (D4×C10)⋊22C4φ: Dic5/C10C2 ⊆ Out C2×D4804(C2xD4):10Dic5320,867
(C2×D4)⋊11Dic5 = C24.38D10φ: Dic5/C10C2 ⊆ Out C2×D480(C2xD4):11Dic5320,1470

Non-split extensions G=N.Q with N=C2×D4 and Q=Dic5
extensionφ:Q→Out NdρLabelID
(C2×D4).1Dic5 = C42.7D10φ: Dic5/C5C4 ⊆ Out C2×D4160(C2xD4).1Dic5320,98
(C2×D4).2Dic5 = C42.Dic5φ: Dic5/C5C4 ⊆ Out C2×D4804(C2xD4).2Dic5320,100
(C2×D4).3Dic5 = C20.9D8φ: Dic5/C5C4 ⊆ Out C2×D4160(C2xD4).3Dic5320,102
(C2×D4).4Dic5 = C20.57D8φ: Dic5/C10C2 ⊆ Out C2×D4160(C2xD4).4Dic5320,92
(C2×D4).5Dic5 = C42.47D10φ: Dic5/C10C2 ⊆ Out C2×D4160(C2xD4).5Dic5320,638
(C2×D4).6Dic5 = C207M4(2)φ: Dic5/C10C2 ⊆ Out C2×D4160(C2xD4).6Dic5320,639
(C2×D4).7Dic5 = C2×C20.D4φ: Dic5/C10C2 ⊆ Out C2×D480(C2xD4).7Dic5320,843
(C2×D4).8Dic5 = (D4×C10).24C4φ: Dic5/C10C2 ⊆ Out C2×D4160(C2xD4).8Dic5320,861
(C2×D4).9Dic5 = (D4×C10).29C4φ: Dic5/C10C2 ⊆ Out C2×D4804(C2xD4).9Dic5320,864
(C2×D4).10Dic5 = C20.76C24φ: Dic5/C10C2 ⊆ Out C2×D4804(C2xD4).10Dic5320,1491
(C2×D4).11Dic5 = D4×C52C8φ: trivial image160(C2xD4).11Dic5320,637
(C2×D4).12Dic5 = C2×D4.Dic5φ: trivial image160(C2xD4).12Dic5320,1490

׿
×
𝔽