Extensions 1→N→G→Q→1 with N=C2xD4 and Q=Dic5

Direct product G=NxQ with N=C2xD4 and Q=Dic5
dρLabelID
C2xD4xDic5160C2xD4xDic5320,1467

Semidirect products G=N:Q with N=C2xD4 and Q=Dic5
extensionφ:Q→Out NdρLabelID
(C2xD4):1Dic5 = C4:C4:Dic5φ: Dic5/C5C4 ⊆ Out C2xD480(C2xD4):1Dic5320,95
(C2xD4):2Dic5 = C42:3Dic5φ: Dic5/C5C4 ⊆ Out C2xD4404(C2xD4):2Dic5320,103
(C2xD4):3Dic5 = C2xD4:Dic5φ: Dic5/C10C2 ⊆ Out C2xD4160(C2xD4):3Dic5320,841
(C2xD4):4Dic5 = (D4xC10):18C4φ: Dic5/C10C2 ⊆ Out C2xD480(C2xD4):4Dic5320,842
(C2xD4):5Dic5 = C2xC23:Dic5φ: Dic5/C10C2 ⊆ Out C2xD480(C2xD4):5Dic5320,846
(C2xD4):6Dic5 = C24.18D10φ: Dic5/C10C2 ⊆ Out C2xD4160(C2xD4):6Dic5320,847
(C2xD4):7Dic5 = C24.19D10φ: Dic5/C10C2 ⊆ Out C2xD4160(C2xD4):7Dic5320,848
(C2xD4):8Dic5 = C2xD4:2Dic5φ: Dic5/C10C2 ⊆ Out C2xD480(C2xD4):8Dic5320,862
(C2xD4):9Dic5 = (D4xC10):21C4φ: Dic5/C10C2 ⊆ Out C2xD4804(C2xD4):9Dic5320,863
(C2xD4):10Dic5 = (D4xC10):22C4φ: Dic5/C10C2 ⊆ Out C2xD4804(C2xD4):10Dic5320,867
(C2xD4):11Dic5 = C24.38D10φ: Dic5/C10C2 ⊆ Out C2xD480(C2xD4):11Dic5320,1470

Non-split extensions G=N.Q with N=C2xD4 and Q=Dic5
extensionφ:Q→Out NdρLabelID
(C2xD4).1Dic5 = C42.7D10φ: Dic5/C5C4 ⊆ Out C2xD4160(C2xD4).1Dic5320,98
(C2xD4).2Dic5 = C42.Dic5φ: Dic5/C5C4 ⊆ Out C2xD4804(C2xD4).2Dic5320,100
(C2xD4).3Dic5 = C20.9D8φ: Dic5/C5C4 ⊆ Out C2xD4160(C2xD4).3Dic5320,102
(C2xD4).4Dic5 = C20.57D8φ: Dic5/C10C2 ⊆ Out C2xD4160(C2xD4).4Dic5320,92
(C2xD4).5Dic5 = C42.47D10φ: Dic5/C10C2 ⊆ Out C2xD4160(C2xD4).5Dic5320,638
(C2xD4).6Dic5 = C20:7M4(2)φ: Dic5/C10C2 ⊆ Out C2xD4160(C2xD4).6Dic5320,639
(C2xD4).7Dic5 = C2xC20.D4φ: Dic5/C10C2 ⊆ Out C2xD480(C2xD4).7Dic5320,843
(C2xD4).8Dic5 = (D4xC10).24C4φ: Dic5/C10C2 ⊆ Out C2xD4160(C2xD4).8Dic5320,861
(C2xD4).9Dic5 = (D4xC10).29C4φ: Dic5/C10C2 ⊆ Out C2xD4804(C2xD4).9Dic5320,864
(C2xD4).10Dic5 = C20.76C24φ: Dic5/C10C2 ⊆ Out C2xD4804(C2xD4).10Dic5320,1491
(C2xD4).11Dic5 = D4xC5:2C8φ: trivial image160(C2xD4).11Dic5320,637
(C2xD4).12Dic5 = C2xD4.Dic5φ: trivial image160(C2xD4).12Dic5320,1490

׿
x
:
Z
F
o
wr
Q
<