Copied to
clipboard

G = C2×D4×Dic5order 320 = 26·5

Direct product of C2, D4 and Dic5

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×D4×Dic5, C24.57D10, C106(C4×D4), (D4×C10)⋊23C4, C207(C22×C4), C234(C2×Dic5), C41(C22×Dic5), (C2×D4).250D10, C10.65(C23×C4), C4⋊Dic575C22, (C23×Dic5)⋊7C2, (C22×D4).13D5, C22.145(D4×D5), C2.6(C23×Dic5), (C2×C10).290C24, (C2×C20).539C23, (C4×Dic5)⋊66C22, C10.128(C22×D4), (C22×C4).377D10, C23.D556C22, C221(C22×Dic5), C22.44(C23×D5), (D4×C10).268C22, (C23×C10).72C22, C23.203(C22×D5), C22.76(D42D5), (C22×C10).226C23, (C22×C20).272C22, (C2×Dic5).290C23, (C22×Dic5)⋊47C22, C57(C2×C4×D4), C2.6(C2×D4×D5), (D4×C2×C10).7C2, (C2×C20)⋊27(C2×C4), (C5×D4)⋊29(C2×C4), (C2×C4×Dic5)⋊10C2, (C2×C4)⋊7(C2×Dic5), (C2×C4⋊Dic5)⋊44C2, (C2×C10)⋊7(C22×C4), C2.6(C2×D42D5), (C22×C10)⋊18(C2×C4), C10.102(C2×C4○D4), (C2×C10).404(C2×D4), (C2×C23.D5)⋊23C2, (C2×C4).622(C22×D5), (C2×C10).174(C4○D4), SmallGroup(320,1467)

Series: Derived Chief Lower central Upper central

C1C10 — C2×D4×Dic5
C1C5C10C2×C10C2×Dic5C22×Dic5C23×Dic5 — C2×D4×Dic5
C5C10 — C2×D4×Dic5
C1C23C22×D4

Generators and relations for C2×D4×Dic5
 G = < a,b,c,d,e | a2=b4=c2=d10=1, e2=d5, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede-1=d-1 >

Subgroups: 1102 in 426 conjugacy classes, 215 normal (21 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C5, C2×C4, C2×C4, D4, C23, C23, C23, C10, C10, C10, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C24, Dic5, Dic5, C20, C2×C10, C2×C10, C2×C10, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C4×D4, C23×C4, C22×D4, C2×Dic5, C2×Dic5, C2×C20, C5×D4, C22×C10, C22×C10, C22×C10, C2×C4×D4, C4×Dic5, C4⋊Dic5, C23.D5, C22×Dic5, C22×Dic5, C22×Dic5, C22×C20, D4×C10, C23×C10, C2×C4×Dic5, C2×C4⋊Dic5, D4×Dic5, C2×C23.D5, C23×Dic5, D4×C2×C10, C2×D4×Dic5
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, C22×C4, C2×D4, C4○D4, C24, Dic5, D10, C4×D4, C23×C4, C22×D4, C2×C4○D4, C2×Dic5, C22×D5, C2×C4×D4, D4×D5, D42D5, C22×Dic5, C23×D5, D4×Dic5, C2×D4×D5, C2×D42D5, C23×Dic5, C2×D4×Dic5

Smallest permutation representation of C2×D4×Dic5
On 160 points
Generators in S160
(1 68)(2 69)(3 70)(4 61)(5 62)(6 63)(7 64)(8 65)(9 66)(10 67)(11 122)(12 123)(13 124)(14 125)(15 126)(16 127)(17 128)(18 129)(19 130)(20 121)(21 59)(22 60)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(29 57)(30 58)(31 71)(32 72)(33 73)(34 74)(35 75)(36 76)(37 77)(38 78)(39 79)(40 80)(41 88)(42 89)(43 90)(44 81)(45 82)(46 83)(47 84)(48 85)(49 86)(50 87)(91 144)(92 145)(93 146)(94 147)(95 148)(96 149)(97 150)(98 141)(99 142)(100 143)(101 138)(102 139)(103 140)(104 131)(105 132)(106 133)(107 134)(108 135)(109 136)(110 137)(111 151)(112 152)(113 153)(114 154)(115 155)(116 156)(117 157)(118 158)(119 159)(120 160)
(1 85 28 76)(2 86 29 77)(3 87 30 78)(4 88 21 79)(5 89 22 80)(6 90 23 71)(7 81 24 72)(8 82 25 73)(9 83 26 74)(10 84 27 75)(11 102 159 99)(12 103 160 100)(13 104 151 91)(14 105 152 92)(15 106 153 93)(16 107 154 94)(17 108 155 95)(18 109 156 96)(19 110 157 97)(20 101 158 98)(31 63 43 51)(32 64 44 52)(33 65 45 53)(34 66 46 54)(35 67 47 55)(36 68 48 56)(37 69 49 57)(38 70 50 58)(39 61 41 59)(40 62 42 60)(111 144 124 131)(112 145 125 132)(113 146 126 133)(114 147 127 134)(115 148 128 135)(116 149 129 136)(117 150 130 137)(118 141 121 138)(119 142 122 139)(120 143 123 140)
(1 51)(2 52)(3 53)(4 54)(5 55)(6 56)(7 57)(8 58)(9 59)(10 60)(11 127)(12 128)(13 129)(14 130)(15 121)(16 122)(17 123)(18 124)(19 125)(20 126)(21 66)(22 67)(23 68)(24 69)(25 70)(26 61)(27 62)(28 63)(29 64)(30 65)(31 76)(32 77)(33 78)(34 79)(35 80)(36 71)(37 72)(38 73)(39 74)(40 75)(41 83)(42 84)(43 85)(44 86)(45 87)(46 88)(47 89)(48 90)(49 81)(50 82)(91 136)(92 137)(93 138)(94 139)(95 140)(96 131)(97 132)(98 133)(99 134)(100 135)(101 146)(102 147)(103 148)(104 149)(105 150)(106 141)(107 142)(108 143)(109 144)(110 145)(111 156)(112 157)(113 158)(114 159)(115 160)(116 151)(117 152)(118 153)(119 154)(120 155)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 139 6 134)(2 138 7 133)(3 137 8 132)(4 136 9 131)(5 135 10 140)(11 31 16 36)(12 40 17 35)(13 39 18 34)(14 38 19 33)(15 37 20 32)(21 149 26 144)(22 148 27 143)(23 147 28 142)(24 146 29 141)(25 145 30 150)(41 156 46 151)(42 155 47 160)(43 154 48 159)(44 153 49 158)(45 152 50 157)(51 94 56 99)(52 93 57 98)(53 92 58 97)(54 91 59 96)(55 100 60 95)(61 109 66 104)(62 108 67 103)(63 107 68 102)(64 106 69 101)(65 105 70 110)(71 127 76 122)(72 126 77 121)(73 125 78 130)(74 124 79 129)(75 123 80 128)(81 113 86 118)(82 112 87 117)(83 111 88 116)(84 120 89 115)(85 119 90 114)

G:=sub<Sym(160)| (1,68)(2,69)(3,70)(4,61)(5,62)(6,63)(7,64)(8,65)(9,66)(10,67)(11,122)(12,123)(13,124)(14,125)(15,126)(16,127)(17,128)(18,129)(19,130)(20,121)(21,59)(22,60)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80)(41,88)(42,89)(43,90)(44,81)(45,82)(46,83)(47,84)(48,85)(49,86)(50,87)(91,144)(92,145)(93,146)(94,147)(95,148)(96,149)(97,150)(98,141)(99,142)(100,143)(101,138)(102,139)(103,140)(104,131)(105,132)(106,133)(107,134)(108,135)(109,136)(110,137)(111,151)(112,152)(113,153)(114,154)(115,155)(116,156)(117,157)(118,158)(119,159)(120,160), (1,85,28,76)(2,86,29,77)(3,87,30,78)(4,88,21,79)(5,89,22,80)(6,90,23,71)(7,81,24,72)(8,82,25,73)(9,83,26,74)(10,84,27,75)(11,102,159,99)(12,103,160,100)(13,104,151,91)(14,105,152,92)(15,106,153,93)(16,107,154,94)(17,108,155,95)(18,109,156,96)(19,110,157,97)(20,101,158,98)(31,63,43,51)(32,64,44,52)(33,65,45,53)(34,66,46,54)(35,67,47,55)(36,68,48,56)(37,69,49,57)(38,70,50,58)(39,61,41,59)(40,62,42,60)(111,144,124,131)(112,145,125,132)(113,146,126,133)(114,147,127,134)(115,148,128,135)(116,149,129,136)(117,150,130,137)(118,141,121,138)(119,142,122,139)(120,143,123,140), (1,51)(2,52)(3,53)(4,54)(5,55)(6,56)(7,57)(8,58)(9,59)(10,60)(11,127)(12,128)(13,129)(14,130)(15,121)(16,122)(17,123)(18,124)(19,125)(20,126)(21,66)(22,67)(23,68)(24,69)(25,70)(26,61)(27,62)(28,63)(29,64)(30,65)(31,76)(32,77)(33,78)(34,79)(35,80)(36,71)(37,72)(38,73)(39,74)(40,75)(41,83)(42,84)(43,85)(44,86)(45,87)(46,88)(47,89)(48,90)(49,81)(50,82)(91,136)(92,137)(93,138)(94,139)(95,140)(96,131)(97,132)(98,133)(99,134)(100,135)(101,146)(102,147)(103,148)(104,149)(105,150)(106,141)(107,142)(108,143)(109,144)(110,145)(111,156)(112,157)(113,158)(114,159)(115,160)(116,151)(117,152)(118,153)(119,154)(120,155), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,139,6,134)(2,138,7,133)(3,137,8,132)(4,136,9,131)(5,135,10,140)(11,31,16,36)(12,40,17,35)(13,39,18,34)(14,38,19,33)(15,37,20,32)(21,149,26,144)(22,148,27,143)(23,147,28,142)(24,146,29,141)(25,145,30,150)(41,156,46,151)(42,155,47,160)(43,154,48,159)(44,153,49,158)(45,152,50,157)(51,94,56,99)(52,93,57,98)(53,92,58,97)(54,91,59,96)(55,100,60,95)(61,109,66,104)(62,108,67,103)(63,107,68,102)(64,106,69,101)(65,105,70,110)(71,127,76,122)(72,126,77,121)(73,125,78,130)(74,124,79,129)(75,123,80,128)(81,113,86,118)(82,112,87,117)(83,111,88,116)(84,120,89,115)(85,119,90,114)>;

G:=Group( (1,68)(2,69)(3,70)(4,61)(5,62)(6,63)(7,64)(8,65)(9,66)(10,67)(11,122)(12,123)(13,124)(14,125)(15,126)(16,127)(17,128)(18,129)(19,130)(20,121)(21,59)(22,60)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,71)(32,72)(33,73)(34,74)(35,75)(36,76)(37,77)(38,78)(39,79)(40,80)(41,88)(42,89)(43,90)(44,81)(45,82)(46,83)(47,84)(48,85)(49,86)(50,87)(91,144)(92,145)(93,146)(94,147)(95,148)(96,149)(97,150)(98,141)(99,142)(100,143)(101,138)(102,139)(103,140)(104,131)(105,132)(106,133)(107,134)(108,135)(109,136)(110,137)(111,151)(112,152)(113,153)(114,154)(115,155)(116,156)(117,157)(118,158)(119,159)(120,160), (1,85,28,76)(2,86,29,77)(3,87,30,78)(4,88,21,79)(5,89,22,80)(6,90,23,71)(7,81,24,72)(8,82,25,73)(9,83,26,74)(10,84,27,75)(11,102,159,99)(12,103,160,100)(13,104,151,91)(14,105,152,92)(15,106,153,93)(16,107,154,94)(17,108,155,95)(18,109,156,96)(19,110,157,97)(20,101,158,98)(31,63,43,51)(32,64,44,52)(33,65,45,53)(34,66,46,54)(35,67,47,55)(36,68,48,56)(37,69,49,57)(38,70,50,58)(39,61,41,59)(40,62,42,60)(111,144,124,131)(112,145,125,132)(113,146,126,133)(114,147,127,134)(115,148,128,135)(116,149,129,136)(117,150,130,137)(118,141,121,138)(119,142,122,139)(120,143,123,140), (1,51)(2,52)(3,53)(4,54)(5,55)(6,56)(7,57)(8,58)(9,59)(10,60)(11,127)(12,128)(13,129)(14,130)(15,121)(16,122)(17,123)(18,124)(19,125)(20,126)(21,66)(22,67)(23,68)(24,69)(25,70)(26,61)(27,62)(28,63)(29,64)(30,65)(31,76)(32,77)(33,78)(34,79)(35,80)(36,71)(37,72)(38,73)(39,74)(40,75)(41,83)(42,84)(43,85)(44,86)(45,87)(46,88)(47,89)(48,90)(49,81)(50,82)(91,136)(92,137)(93,138)(94,139)(95,140)(96,131)(97,132)(98,133)(99,134)(100,135)(101,146)(102,147)(103,148)(104,149)(105,150)(106,141)(107,142)(108,143)(109,144)(110,145)(111,156)(112,157)(113,158)(114,159)(115,160)(116,151)(117,152)(118,153)(119,154)(120,155), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,139,6,134)(2,138,7,133)(3,137,8,132)(4,136,9,131)(5,135,10,140)(11,31,16,36)(12,40,17,35)(13,39,18,34)(14,38,19,33)(15,37,20,32)(21,149,26,144)(22,148,27,143)(23,147,28,142)(24,146,29,141)(25,145,30,150)(41,156,46,151)(42,155,47,160)(43,154,48,159)(44,153,49,158)(45,152,50,157)(51,94,56,99)(52,93,57,98)(53,92,58,97)(54,91,59,96)(55,100,60,95)(61,109,66,104)(62,108,67,103)(63,107,68,102)(64,106,69,101)(65,105,70,110)(71,127,76,122)(72,126,77,121)(73,125,78,130)(74,124,79,129)(75,123,80,128)(81,113,86,118)(82,112,87,117)(83,111,88,116)(84,120,89,115)(85,119,90,114) );

G=PermutationGroup([[(1,68),(2,69),(3,70),(4,61),(5,62),(6,63),(7,64),(8,65),(9,66),(10,67),(11,122),(12,123),(13,124),(14,125),(15,126),(16,127),(17,128),(18,129),(19,130),(20,121),(21,59),(22,60),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(29,57),(30,58),(31,71),(32,72),(33,73),(34,74),(35,75),(36,76),(37,77),(38,78),(39,79),(40,80),(41,88),(42,89),(43,90),(44,81),(45,82),(46,83),(47,84),(48,85),(49,86),(50,87),(91,144),(92,145),(93,146),(94,147),(95,148),(96,149),(97,150),(98,141),(99,142),(100,143),(101,138),(102,139),(103,140),(104,131),(105,132),(106,133),(107,134),(108,135),(109,136),(110,137),(111,151),(112,152),(113,153),(114,154),(115,155),(116,156),(117,157),(118,158),(119,159),(120,160)], [(1,85,28,76),(2,86,29,77),(3,87,30,78),(4,88,21,79),(5,89,22,80),(6,90,23,71),(7,81,24,72),(8,82,25,73),(9,83,26,74),(10,84,27,75),(11,102,159,99),(12,103,160,100),(13,104,151,91),(14,105,152,92),(15,106,153,93),(16,107,154,94),(17,108,155,95),(18,109,156,96),(19,110,157,97),(20,101,158,98),(31,63,43,51),(32,64,44,52),(33,65,45,53),(34,66,46,54),(35,67,47,55),(36,68,48,56),(37,69,49,57),(38,70,50,58),(39,61,41,59),(40,62,42,60),(111,144,124,131),(112,145,125,132),(113,146,126,133),(114,147,127,134),(115,148,128,135),(116,149,129,136),(117,150,130,137),(118,141,121,138),(119,142,122,139),(120,143,123,140)], [(1,51),(2,52),(3,53),(4,54),(5,55),(6,56),(7,57),(8,58),(9,59),(10,60),(11,127),(12,128),(13,129),(14,130),(15,121),(16,122),(17,123),(18,124),(19,125),(20,126),(21,66),(22,67),(23,68),(24,69),(25,70),(26,61),(27,62),(28,63),(29,64),(30,65),(31,76),(32,77),(33,78),(34,79),(35,80),(36,71),(37,72),(38,73),(39,74),(40,75),(41,83),(42,84),(43,85),(44,86),(45,87),(46,88),(47,89),(48,90),(49,81),(50,82),(91,136),(92,137),(93,138),(94,139),(95,140),(96,131),(97,132),(98,133),(99,134),(100,135),(101,146),(102,147),(103,148),(104,149),(105,150),(106,141),(107,142),(108,143),(109,144),(110,145),(111,156),(112,157),(113,158),(114,159),(115,160),(116,151),(117,152),(118,153),(119,154),(120,155)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,139,6,134),(2,138,7,133),(3,137,8,132),(4,136,9,131),(5,135,10,140),(11,31,16,36),(12,40,17,35),(13,39,18,34),(14,38,19,33),(15,37,20,32),(21,149,26,144),(22,148,27,143),(23,147,28,142),(24,146,29,141),(25,145,30,150),(41,156,46,151),(42,155,47,160),(43,154,48,159),(44,153,49,158),(45,152,50,157),(51,94,56,99),(52,93,57,98),(53,92,58,97),(54,91,59,96),(55,100,60,95),(61,109,66,104),(62,108,67,103),(63,107,68,102),(64,106,69,101),(65,105,70,110),(71,127,76,122),(72,126,77,121),(73,125,78,130),(74,124,79,129),(75,123,80,128),(81,113,86,118),(82,112,87,117),(83,111,88,116),(84,120,89,115),(85,119,90,114)]])

80 conjugacy classes

class 1 2A···2G2H···2O4A4B4C4D4E···4L4M···4X5A5B10A···10N10O···10AD20A···20H
order12···22···244444···44···45510···1010···1020···20
size11···12···222225···510···10222···24···44···4

80 irreducible representations

dim11111111222222244
type++++++++++-+++-
imageC1C2C2C2C2C2C2C4D4D5C4○D4D10Dic5D10D10D4×D5D42D5
kernelC2×D4×Dic5C2×C4×Dic5C2×C4⋊Dic5D4×Dic5C2×C23.D5C23×Dic5D4×C2×C10D4×C10C2×Dic5C22×D4C2×C10C22×C4C2×D4C2×D4C24C22C22
# reps1118221164242168444

Matrix representation of C2×D4×Dic5 in GL6(𝔽41)

100000
010000
0040000
0004000
000010
000001
,
4000000
0400000
001000
000100
00004037
0000211
,
4000000
0400000
001000
000100
000010
00002040
,
2300000
0250000
0004000
0013500
0000400
0000040
,
010000
4000000
0043100
00143700
0000320
0000032

G:=sub<GL(6,GF(41))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,21,0,0,0,0,37,1],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,20,0,0,0,0,0,40],[23,0,0,0,0,0,0,25,0,0,0,0,0,0,0,1,0,0,0,0,40,35,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[0,40,0,0,0,0,1,0,0,0,0,0,0,0,4,14,0,0,0,0,31,37,0,0,0,0,0,0,32,0,0,0,0,0,0,32] >;

C2×D4×Dic5 in GAP, Magma, Sage, TeX

C_2\times D_4\times {\rm Dic}_5
% in TeX

G:=Group("C2xD4xDic5");
// GroupNames label

G:=SmallGroup(320,1467);
// by ID

G=gap.SmallGroup(320,1467);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,112,297,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=c^2=d^10=1,e^2=d^5,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

׿
×
𝔽