Extensions 1→N→G→Q→1 with N=D4 and Q=C2xF5

Direct product G=NxQ with N=D4 and Q=C2xF5
dρLabelID
C2xD4xF540C2xD4xF5320,1595

Semidirect products G=N:Q with N=D4 and Q=C2xF5
extensionφ:Q→Out NdρLabelID
D4:1(C2xF5) = D8xF5φ: C2xF5/F5C2 ⊆ Out D4408+D4:1(C2xF5)320,1068
D4:2(C2xF5) = D40:C4φ: C2xF5/F5C2 ⊆ Out D4408+D4:2(C2xF5)320,1069
D4:3(C2xF5) = C2xD20:C4φ: C2xF5/D10C2 ⊆ Out D480D4:3(C2xF5)320,1104
D4:4(C2xF5) = C2xD4:F5φ: C2xF5/D10C2 ⊆ Out D480D4:4(C2xF5)320,1106
D4:5(C2xF5) = D5:C4wrC2φ: C2xF5/D10C2 ⊆ Out D4408D4:5(C2xF5)320,1130
D4:6(C2xF5) = C4oD4:F5φ: C2xF5/D10C2 ⊆ Out D4408D4:6(C2xF5)320,1131
D4:7(C2xF5) = D10.C24φ: trivial image408+D4:7(C2xF5)320,1596
D4:8(C2xF5) = C4oD4xF5φ: trivial image408D4:8(C2xF5)320,1603
D4:9(C2xF5) = D5.2+ 1+4φ: trivial image408D4:9(C2xF5)320,1604

Non-split extensions G=N.Q with N=D4 and Q=C2xF5
extensionφ:Q→Out NdρLabelID
D4.1(C2xF5) = D8:5F5φ: C2xF5/F5C2 ⊆ Out D4808-D4.1(C2xF5)320,1070
D4.2(C2xF5) = D8:F5φ: C2xF5/F5C2 ⊆ Out D4808-D4.2(C2xF5)320,1071
D4.3(C2xF5) = SD16xF5φ: C2xF5/F5C2 ⊆ Out D4408D4.3(C2xF5)320,1072
D4.4(C2xF5) = SD16:F5φ: C2xF5/F5C2 ⊆ Out D4408D4.4(C2xF5)320,1073
D4.5(C2xF5) = SD16:3F5φ: C2xF5/F5C2 ⊆ Out D4808D4.5(C2xF5)320,1074
D4.6(C2xF5) = SD16:2F5φ: C2xF5/F5C2 ⊆ Out D4808D4.6(C2xF5)320,1075
D4.7(C2xF5) = (D4xC10):C4φ: C2xF5/D10C2 ⊆ Out D4408+D4.7(C2xF5)320,1105
D4.8(C2xF5) = (C2xD4):6F5φ: C2xF5/D10C2 ⊆ Out D4808-D4.8(C2xF5)320,1107
D4.9(C2xF5) = C4oD20:C4φ: C2xF5/D10C2 ⊆ Out D4808D4.9(C2xF5)320,1132
D4.10(C2xF5) = D4:F5:C2φ: C2xF5/D10C2 ⊆ Out D4808D4.10(C2xF5)320,1133
D4.11(C2xF5) = C2xD4.F5φ: trivial image160D4.11(C2xF5)320,1593
D4.12(C2xF5) = Dic5.C24φ: trivial image808-D4.12(C2xF5)320,1594
D4.13(C2xF5) = Dic5.21C24φ: trivial image808D4.13(C2xF5)320,1601
D4.14(C2xF5) = Dic5.22C24φ: trivial image808D4.14(C2xF5)320,1602

׿
x
:
Z
F
o
wr
Q
<