# Extensions 1→N→G→Q→1 with N=D4 and Q=C2×F5

Direct product G=N×Q with N=D4 and Q=C2×F5
dρLabelID
C2×D4×F540C2xD4xF5320,1595

Semidirect products G=N:Q with N=D4 and Q=C2×F5
extensionφ:Q→Out NdρLabelID
D41(C2×F5) = D8×F5φ: C2×F5/F5C2 ⊆ Out D4408+D4:1(C2xF5)320,1068
D42(C2×F5) = D40⋊C4φ: C2×F5/F5C2 ⊆ Out D4408+D4:2(C2xF5)320,1069
D43(C2×F5) = C2×D20⋊C4φ: C2×F5/D10C2 ⊆ Out D480D4:3(C2xF5)320,1104
D44(C2×F5) = C2×D4⋊F5φ: C2×F5/D10C2 ⊆ Out D480D4:4(C2xF5)320,1106
D45(C2×F5) = D5⋊C4≀C2φ: C2×F5/D10C2 ⊆ Out D4408D4:5(C2xF5)320,1130
D46(C2×F5) = C4○D4⋊F5φ: C2×F5/D10C2 ⊆ Out D4408D4:6(C2xF5)320,1131
D47(C2×F5) = D10.C24φ: trivial image408+D4:7(C2xF5)320,1596
D48(C2×F5) = C4○D4×F5φ: trivial image408D4:8(C2xF5)320,1603
D49(C2×F5) = D5.2+ 1+4φ: trivial image408D4:9(C2xF5)320,1604

Non-split extensions G=N.Q with N=D4 and Q=C2×F5
extensionφ:Q→Out NdρLabelID
D4.1(C2×F5) = D85F5φ: C2×F5/F5C2 ⊆ Out D4808-D4.1(C2xF5)320,1070
D4.2(C2×F5) = D8⋊F5φ: C2×F5/F5C2 ⊆ Out D4808-D4.2(C2xF5)320,1071
D4.3(C2×F5) = SD16×F5φ: C2×F5/F5C2 ⊆ Out D4408D4.3(C2xF5)320,1072
D4.4(C2×F5) = SD16⋊F5φ: C2×F5/F5C2 ⊆ Out D4408D4.4(C2xF5)320,1073
D4.5(C2×F5) = SD163F5φ: C2×F5/F5C2 ⊆ Out D4808D4.5(C2xF5)320,1074
D4.6(C2×F5) = SD162F5φ: C2×F5/F5C2 ⊆ Out D4808D4.6(C2xF5)320,1075
D4.7(C2×F5) = (D4×C10)⋊C4φ: C2×F5/D10C2 ⊆ Out D4408+D4.7(C2xF5)320,1105
D4.8(C2×F5) = (C2×D4)⋊6F5φ: C2×F5/D10C2 ⊆ Out D4808-D4.8(C2xF5)320,1107
D4.9(C2×F5) = C4○D20⋊C4φ: C2×F5/D10C2 ⊆ Out D4808D4.9(C2xF5)320,1132
D4.10(C2×F5) = D4⋊F5⋊C2φ: C2×F5/D10C2 ⊆ Out D4808D4.10(C2xF5)320,1133
D4.11(C2×F5) = C2×D4.F5φ: trivial image160D4.11(C2xF5)320,1593
D4.12(C2×F5) = Dic5.C24φ: trivial image808-D4.12(C2xF5)320,1594
D4.13(C2×F5) = Dic5.21C24φ: trivial image808D4.13(C2xF5)320,1601
D4.14(C2×F5) = Dic5.22C24φ: trivial image808D4.14(C2xF5)320,1602

׿
×
𝔽